B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và giá trị lớn nhất bằng \(1\).
C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
D. Hàm số đạt giá trị lớn nhất tại điểm có hoành độ \(x = 1\) và giá trị lớn nhất bằng \(1\).
Đáp án đúng là: A
Tập xác định: \(D = \left[ {1; + \infty } \right)\).
Ta có: \(y' = 1 - \frac{1}{{2\sqrt {x - 1} }} = \frac{{2\sqrt {x - 1} - 1}}{{2\sqrt {x - 1} }}\).
\(y' = 0 \Leftrightarrow \frac{{2\sqrt {x - 1} - 1}}{{2\sqrt {x - 1} }} = 0\)\( \Leftrightarrow 2\sqrt {x - 1} = 1 \Leftrightarrow x = \frac{5}{4}\).
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta thấy:
Hàm số có giá trị nhỏ nhất là \(\frac{3}{4}\) và không có giá trị lớn nhất.
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa và các suối nước đổ về hồ. Từ lúc 8 giờ sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian \(t\) (giờ) trong ngày cho bởi công thức:
\(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right)\).
Biết rằng phải thông báo cho các hộ dân phải di dời đi trước khi xả nước theo quy định trước 5 giờ. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước mấy giờ? Biết rằng mực nước trong hồ phải đi lên cao nhất mới xả nước. (1,0 điểm)
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?