Cho hình lập phương \(ABCD.A'B'C'D'\). Khẳng định nào sau đây là sai?
A. \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = 90^\circ.\)
B. \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = 45^\circ.\)
C. \(\left( {\overrightarrow {AC} ,\overrightarrow {B'D'} } \right) = 90^\circ.\)
D. \(\left( {\overrightarrow {A'A} ,\overrightarrow {CB'} } \right) = 45^\circ.\)
Đáp án đúng là: D
Ta có:
\(ABCD.A'B'C'D'\) là hình lập phương.
Do đó, \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {DAB} = 90^\circ ;\)
\(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 45^\circ \);
\(\left( {\overrightarrow {AC} ,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right) = 90^\circ ;\)
\(\left( {\overrightarrow {A'A} ,\overrightarrow {CB'} } \right) = \left( {\overrightarrow {C'C} ,\overrightarrow {CB'} } \right) = 180^\circ - \widehat {C'CB'} = 135^\circ .\)
I. Nhận biết
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Vectơ nào sau đây cùng phương với \(\overrightarrow {BC} \) ?
Cho khối lập phương \(ABCD.A'B'C'D'\). Khi đó, góc giữa vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {AD} \) là
III. Vận dụng
Một chiếc đèn chùm treo có khối lượng \(m = 5\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,SB,SC,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \). Biết \(\overrightarrow P = m.\overrightarrow g \) trong đó \(\overrightarrow g \) là vectơ gia tốc rơi tự do có độ lớn \(10\)m/s2, \(\overrightarrow P \) là trọng lượng của vật có đơn vị kg.
Khi đó:
a) \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \) là 4 vectơ đồng phẳng.
b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|.\)
c) Độ lớn của trọng lực \(\overrightarrow P \) tác động lên chiếc đèn chùm bằng \(50N\).
d) Độ lớn của lực căng cho mỗi sợi xích bằng \(\frac{{25\sqrt 3 }}{2}N\).
Số mệnh đề đúng trong các mệnh đề trên là:
Cho hình chóp \(S.ABC\). Tổng của hai vectơ \(\overrightarrow {SA} \) và \(\overrightarrow {AB} \) là
Cho hình lăng trụ \(ABC.A'B'C'\). Chọn khẳng định đúng trong các khẳng định dưới đây:
Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(2\sqrt 3 \). Tính độ dài vectơ \(\overrightarrow u = \overrightarrow {SA} - \overrightarrow {SC} .\)
Cho \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ khác vectơ \(\overrightarrow 0 \). Mệnh đề nào sau đây đúng?
Cho tứ diện \(ABCD\). Lấy \(G\) là trọng tâm tam giác \(BCD\). Phát biểu nào sau đây là sai?
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4\); \(\left| {\overrightarrow b } \right| = 3\); \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Chọn khẳng định đúng ?
Cho hình lập phương \(ABCD.EFGH\) có cạnh bằng \(a\). Ta có: \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng:
Cho hình lăng trụ \(ABC.A'B'C'\) đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\) Gọi \(G'\) là trọng tâm của tam giác \(A'B'C'\). Vectơ \(\overrightarrow {AG'} \) bằng
Cho hình chóp \(S.ABC\) có \(AB = 4\), \(\widehat {BAC} = 60^\circ \), \(\overrightarrow {AB} .\overrightarrow {AC} = 6\). Khi đó độ dài \(\overrightarrow {AC} \) là
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm của \(BC\).
Tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right)\).
II. Thông hiểu
Cho hình lăng trụ \(ABC.A'B'C'\). Gọi \(M\) là trung điểm của cạnh \(BB'\). Đặt \(\overrightarrow {CA} = \overrightarrow a \), \(\overrightarrow {CB} = \overrightarrow b \), \(\overrightarrow {AA'} = \overrightarrow c \). Khẳng định nào sau đây đúng?
Cho \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ cùng hướng và đều khác vectơ \(\overrightarrow 0 \). Mệnh đề nào sau đây đúng?