Tìm tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số \[y = \frac{{3 - x}}{{2x + 5}}\]
A. \(\left( { - \frac{1}{2};\, - \frac{5}{2}} \right).\)
B. \(\left( { - \frac{5}{2};\,\frac{3}{2}} \right).\)
C. \(\left( { - \frac{5}{2};\, - \frac{1}{2}} \right).\)
D. \(\left( { - \frac{1}{2};\,\frac{5}{2}} \right).\)
Đáp án đúng là: C
Tiệm cận ngang: \[y = - \frac{1}{2}\], vì \[\mathop {\lim }\limits_{x \to - \infty } y = - \frac{1}{2};\,\mathop {\lim }\limits_{x \to + \infty } y = - \frac{1}{2}\].
Tiệm cận đứng: \[x = - \frac{5}{2}\], vì \[\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ - }} y = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ + }} y = + \infty \].
Vậy tọa độ giao điểm hai đường tiệm cận là \(\left( { - \frac{5}{2};\, - \frac{1}{2}} \right).\)
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là
I. Nhận biết
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có tiệm cận đứng bằng
Cho hàm số y = f(x) có bảng biến thiên
Có bao nhiêu giá trị nguyên của m ∈ [−4; 4] để đồ thị hàm số có 4 tiệm cận.
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Cho hàm số \(y = \frac{{2x + 1}}{{x - 2}}\). Khẳng định nào dưới đây là đúng?
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 3}}\) có một đường tiệm cận ngang là
II. Thông hiểu
Đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 3}}\) có bao nhiêu đường tiệm cận?
Viết phương trình các đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 3}}{{2 - x}}\) ?
Đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số nào dưới đây?
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) có bảng biến thiên như hình bên.
Số tiệm cận của đồ thị hàm số đã cho là.
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau
Tổng số đường tiệm cận của đồ thị hàm số \[y = f\left( x \right)\]là
Đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 1 + \frac{3}{{x + 1}}\) là