Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:
a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]
b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]
c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]
d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
A. 1.
B. 2.
C. 3.
D. 4.
Đáp án đúng là: C
Ta có: Phương trình biểu diễn quãng đường của vật là \[s\left( t \right) = \int {v\left( t \right)} dt = \int {\left( {{t^2} - 2t + 1} \right)dt} \]
Suy ra \[s\left( t \right) = \frac{{{t^3}}}{3} - {t^2} + t.\]
a) Quãng đường vật đi được sau 2 giây là \[s\left( 2 \right) = \frac{{{2^3}}}{3} - {2^2} + 2 = \frac{2}{3}\] (m).
Do đó, ý a đúng.
b) Ta có phương trình gia tốc là \[a\left( t \right) = v'\left( t \right) = 2t - 2\].
Thời điểm gia tốc bị triệt tiêu là \[a\left( t \right) = 0\] hay \[t = 1.\]
Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[s\left( 1 \right) = \frac{{{1^3}}}{3} - {1^2} + 1 = \frac{1}{3}\] (m).
Do đó, ý b đúng.
c) Thời điểm vận tốc đạt 9 m/s là nghiệm dương của phương trình \[{t^2} - 2t + 1 = 9\].
Giải phương trình ta được \[t = 4\] và \[t = - 2\] (loại do \[t > 0\]).
Suy ra quãng đường vật đi được sau 4 giây là \[s\left( 4 \right) = \frac{{{4^3}}}{3} - {4^2} + 4 = \frac{{28}}{3}\] (m).
Có \[s\left( 2 \right) = \frac{2}{3}\] (m) nên Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm \[t = 4\] là \[s\left( 4 \right) - s\left( 2 \right) = \frac{{26}}{3}\].
Do đó, ý c đúng.
d) Thời điểm gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[a\left( t \right) = 2t - 2 = 10\] hay t = 6 giây.
Vậy quãng đường vật đi được sau 6 giây là \[s\left( 6 \right) = \frac{{{6^3}}}{3} - {6^2} + 6 = 42\] (m).
Vậy ý d sai.
Cho các mệnh đề dưới đây:
(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số
\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]
Số mệnh đề đúng trong các mệnh đề trên là
Cho hàm số \[f\left( x \right)\] thỏa mãn \[f'\left( x \right) = x + \sin x\] và \[f\left( 0 \right) = 1\]. Tìm \[f\left( x \right)\]
Cho hai hàm số \[f\left( x \right),g\left( x \right)\] là hàm số liên tục, có \[F\left( x \right),G\left( x \right)\] lần lượt là nguyên hàm của \[f\left( x \right),g\left( x \right)\]. Xét các mệnh đề sau:
(I). \[F\left( x \right) + G\left( x \right)\] là một nguyên hàm của \[f\left( x \right) + g\left( x \right).\]
(II). \[kF\left( x \right)\] là một nguyên hàm của \[kf\left( x \right)\] với \[k \ne 0.\]
(III). \[F\left( x \right).G\left( x \right)\] là một nguyên hàm của \[f\left( x \right).g\left( x \right)\].
Các mệnh đề đúng là
I. Nhận biết
Hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên khoảng \[K\] nếu
Cho \[\int {f\left( x \right)dx = } F\left( x \right),{\rm{ }}\int {g\left( x \right)dx = G\left( x \right)} \]. Khi đó, \[I = \int {\left[ {2g\left( x \right) - f\left( x \right)} \right]dx} \] bằng
II. Thông hiểu
Nguyên hàm của hàm số \[f\left( x \right) = \cos 3x\] bằng
Nguyên hàm của hàm số \[f\left( x \right) = {x^2} - 3x + \frac{1}{x}\] là
Hàm số \[F\left( x \right) = 2\sin x - 3\cos x + 1\] là một nguyên hàm của hàm số nào sau đây?
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = 12x + 2\] với mọi \[x \in \mathbb{R}\] và \[f\left( 1 \right) = 3.\] Biết \[F\left( x \right)\] là nguyên hàm của \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2\]. Tính giá trị của \[F\left( 1 \right).\]
Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)\]
Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{{x^2}}} - {x^2} - \frac{1}{3}\] là
Cho hàm số \[f\left( x \right) = 2x + {e^x}\]. Tìm một nguyên hàm \[F\left( x \right)\] của hàm số \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2024.\]
Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] với \[f\left( x \right) = \frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}\] biết \[F\left( 1 \right) = \frac{5}{2}\]. Tính \[F\left( 2 \right)\].