Cho quãng đường từ địa điểm A đến địa điểm B là \(90\) km. Lúc 6 giờ, một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy \(15\) km/h (Hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều đến B cùng lúc. Phương trình của bài toán để tính vận tốc của xe máy là
A. \(\frac{{90}}{x} + \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
B. \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
C. \(\frac{1}{2} - \frac{{90}}{x} = \frac{{90}}{{x + 15}}.\)
D. \(\frac{{90}}{x} + \frac{{90}}{{x + 15}} = \frac{1}{2}.\)
Đáp án đúng là: B
Xe máy đi trước ô tô thời gian là 6 giờ 30 phút – 6 giờ = 30 phút \( = \frac{1}{2}\,\,\left( {\rm{h}} \right).\)
Gọi vận tốc của xe máy là \(x\)(km/h) \(\left( {x > 0} \right)\)
Vì vận tốc ô tô lớn hơn vậy tốc xe máy \(15\) km/h nên vận tốc ô tô là \(x + 15\) (km/h)
Thời gian xe máy đi hết quãng đường AB là: \(\frac{{90}}{x}\) (h)
Thời gian ô tô đi hết quãng đường AB là: \(\frac{{90}}{{x + 15}}\) (h)
Do xe máy đi trước ô tô \(\frac{1}{2}{\rm{h}}\) và hai xe đều tới B cùng một lúc nên ta có phương trình \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Vậy phương trình cần tìm là \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Cho phương trình \(2{x^2} + 2\sqrt {11} x + 3 = 0.\) Khẳng định nào sau đây là đúng
Giá trị của \(m\) để phương trình \({x^2} + 2mx + 4 = 0\) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\) là
I. Nhận biết
Cho hai đường parabol trong mặt phẳng tọa độ \[{\rm{Ox}}y.\] Khẳng định nào sau đây là đúng?
Cho \(x;\,y\) là hai nghiệm của phương trình \(2{x^2} + 2\sqrt 2 x + 4 = 0.\) Tìm tổng hai nghiệm và tích hai nghiệm của phương trình
Phương trình \(m{x^2} + 2\left( {m + 1} \right)x - 1 = 0\) có hai nghiệm trái dấu khi
Cho phương trình \({x^2} - 4mx + 4{m^2} - 2 = 0\,\,\,\left( 1 \right)\) có hai nghiệm phân biệt là \({x_1};\,\,{x_2}\). Giá trị của biểu thức \(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\) là
Hưởng ứng phong trào “Vì biển đảo Trường Sa”, một đội tàu dự định chở \(280\) tấn hàng ra đảo. Nhưng khi chuẩn bị khởi hành thì số hàng hóa đã tăng thêm \(6\) tấn so với dự định. Vì vậy đội tài phải bổ sung thêm \(1\) tàu và mỗi tàu chở ít hơn dự định \(2\) tấn hàng. Hỏi khi dự định, đội tài có bao nhiêu chiếc tàu, biết các tàu chở số tấn hàng bằng nhau?
Cho phương trình \(a{x^2} + bx + c = 0\,\,\,\left( {a \ne 0} \right)\) có \(\Delta = {b^2} - 4ac.\) Khẳng định nào sau đây là đúng
Cho đồ thị của một hàm số bậc hai sau:
Hệ số \(a\) của đồ thị hàm số bậc hai này là
Nếu phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\)có hai nghiệm \({x_1};\,{x_2}\) thì
A. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)B. \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)C. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{a}{c}\end{array} \right..\)D. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = - \frac{c}{a}\end{array} \right..\)
Hướng dẫn giải
Đáp án đúng là: B
Định lí Viète: Nếu \({x_1};\,{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) thì
\(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)Câu 4. Nếu hai số \(x;\,y\) có \(x + y = S\) và \(xy = P\) (điều kiện \({S^2} - 4P \ge 0\)) thì \(x;\,y\) là hai nghiệm của phương trình
Một hình chữ nhật có chiều dài gấp \(3\) lần chiều rộng. Nếu cả chiều dài và chiều rộng cùng tăng thêm \(5\) cm thì được một hình chữ nhật mới có diện tích bằng \(153\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\) Nếu gọi chiều rộng của hình chữ nhật là \(x\)(cm) với \(x > 0\) và chiều dài của hình chữ nhật là \(3x\) cm. Khi đó, chiều rộng và chiều dài hình chữ nhật sau khi tăng thêm lần lượt là là \(x + 5\) (cm) và \(3x + 5\) (cm). Phương trình của bài toán để tính chu vi hình chữ nhật ban đầu là
Cho hàm số bậc hai \(y = 4{x^2}.\) Giá trị của \(y\) khi \(x = - 2\) là