Bạn Tùng gieo một con xúc xắc liên tiếp hai lần.
Xét các biến cố sau:
E: “Cả hai lần gieo con xúc xắc đều xuất hiện mặt có số chấm là số nguyên tố”;
F: “Cả hai lần gieo con xúc xắc đều không xuất hiện mặt có số chấm là số chẵn”.
Biến cố nào có xác suất xảy ra lớn hơn?
A. Biến cố E.
B. Biến cố F.
C. Hai biến cố có xác suất xảy ra bằng nhau.
D. Không thể xác định được.
Đáp án đúng là: C
Bảng kết quả có thể xảy ra của phép thử gieo 2 con xúc xắc:
Xúc xắc 1 Xúc xắc 2 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | \[\left( {1\,;\,\,1} \right)\] | \[\left( {2\,;\,\,1} \right)\] | \[\left( {3\,;\,\,1} \right)\] | \[\left( {4\,;\,\,1} \right)\] | \[\left( {5\,;\,\,1} \right)\] | \[\left( {6\,;\,\,1} \right)\] |
2 | \[\left( {1\,;\,\,2} \right)\] | \[\left( {2\,;\,\,2} \right)\] | \[\left( {3\,;\,\,2} \right)\] | \[\left( {4\,;\,\,2} \right)\] | \[\left( {5\,;\,\,2} \right)\] | \[\left( {6\,;\,\,2} \right)\] |
3 | \[\left( {1\,;\,\,3} \right)\] | \[\left( {2\,;\,\,3} \right)\] | \[\left( {3\,;\,\,3} \right)\] | \[\left( {4\,;\,\,3} \right)\] | \[\left( {5\,;\,\,3} \right)\] | \[\left( {6\,;\,\,3} \right)\] |
4 | \[\left( {1\,;\,\,4} \right)\] | \[\left( {2\,;\,\,4} \right)\] | \[\left( {3\,;\,\,4} \right)\] | \[\left( {4\,;\,\,4} \right)\] | \[\left( {5;{\rm{ }}4} \right)\] | \[\left( {6\,;\,\,4} \right)\] |
5 | \[\left( {1\,;\,\,5} \right)\] | \[\left( {2\,;\,\,5} \right)\] | \[\left( {3\,;\,\,5} \right)\] | \[\left( {4\,;\,\,5} \right)\] | \[\left( {5;{\rm{ }}5} \right)\] | \[\left( {6\,;\,\,5} \right)\] |
6 | \[\left( {1\,;\,\,6} \right)\] | \[\left( {2\,;\,\,6} \right)\] | \[\left( {3\,;\,\,6} \right)\] | \[\left( {4\,;\,\,6} \right)\] | \[\left( {5;{\rm{ }}6} \right)\] | \[\left( {6\,;\,\,6} \right)\] |
Không gian mẫu của phép thử là \(\Omega = \left\{ {\left( {1;\,\,1} \right);\,\,\left( {2;\,\,1} \right);\,\,\left( {3;\,\,1} \right);...;\left( {5;\,\,6} \right);\,\,\left( {6;\,\,6} \right)} \right\}\).
Khả năng xảy ra các mặt của xúc xắc là như nhau nên các kết quả của phép thử có cùng khả năng xảy ra.
Không gian mẫu của phép thử có 36 phần tử.
Có 9 kết quả thuận lợi cho biến cố \[E\] là \[\left( {2\,;\,\,2} \right)\,;\,\,\left( {3\,;\,\,2} \right)\,;\,\,\left( {5\,;\,\,2} \right)\,;\,\,\left( {2\,;\,\,3} \right)\,;\,\,\left( {3\,;\,\,3} \right)\,;\,\,\left( {5\,;\,\,3} \right)\,;\,\,\left( {2\,;\,5} \right)\,;\,\]\[\left( {3\,;\,5} \right)\,;\,\,\left( {5\,;\,\,5} \right).\]
Xác suất xảy ra biến cố \[E\] là \(P\left( E \right) = \frac{9}{{36}} = \frac{1}{4}\).
Có 9 kết quả thuận lợi cho biến cố \[F\] là \[\left( {1;{\rm{ }}1} \right);{\rm{ }}\left( {1;{\rm{ }}3} \right);{\rm{ }}\left( {1;{\rm{ }}5} \right);{\rm{ }}\left( {3;{\rm{ }}1} \right);{\rm{ }}\left( {3;{\rm{ }}3} \right);{\rm{ }}\left( {3;{\rm{ }}5} \right);{\rm{ }}\left( {5;{\rm{ }}1} \right);{\rm{ }}\]\[\left( {5;{\rm{ }}3} \right);{\rm{ }}\left( {5;{\rm{ }}5} \right)\].
Xác suất xảy ra biến cố \[F\] là \(P\left( F \right) = \frac{9}{{36}} = \frac{1}{4}\).
Vậy xác suất xảy ra của hai biến cố này là như nhau.
Viết ngẫu nhiên một số tự nhiên lớn hơn 499 và nhỏ hơn \[1\,\,000.\] Số kết quả có thể xảy ra của phép thử là
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \[1\,,\,\,2\,,\,\,3\,,\,\,...\,,\,\,52;\] hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Xác suất các biến cố “Số xuất hiện trên thẻ được rút ra là số lớn hơn 19 và nhỏ hơn 51” là
Xét phép thử tung con xúc xắc 6 mặt hai lần. Số phần tử của không gian mẫu là
Trên mặt phẳng cho năm điểm phân biệt A, B, C, D, E, trong đó không có ba điểm nào thẳng hàng. Hai điểm A, B được tô màu đỏ, ba điểm C, D, E được tô màu xanh. Bạn Châu chọn ra ngẫu nhiên một điểm tô màu đỏ và một điểm tô màu xanh (trong năm điểm đó) để nối thành một đoạn thẳng. Số kết quả có thể xảy ra là
Một đĩa tròn bằng bìa cứng được chia làm 12 phần bằng nhau và ghi các số \[1\,;\,\,2\,;\,\,3\,;\,\,...\,;\,\,12.\] Chiếc kim được gắn cố định vào trục quay ở tâm của đĩa. Xét phép thử “Quay đĩa tròn một lần”. Xác suất của biến cố \[D\]: “Chiếc kim chỉ vào hình quạt ghi số nguyên tố” là:
III. Vận dụng
Trong một chiếc hộp đựng 1 viên bi đỏ, 1 viên bi xanh, 2 viên bi trắng và 2 viên bi vàng. Lần lượt lấy ngẫu nhiên 2 viên bi và ghi lại màu sắc của hai viên bi đó. Số phần tử của không gian mẫu là
Chọn ngẫu nhiên một số có 2 chữ số. Xác suất để tích hai chữ số của số được chọn bằng 8 là
Gieo một con xúc xắc cân đối và đồng chất. Không gian mẫu của phép thử có số phần tử là
Cho phép thử \[T\], xét biến cố \[E\]. Kết quả của phép thử \[T\] làm cho biến cố \[E\] xảy ra được gọi là
Xét một phép thử có không gian mẫu \(\Omega \) và \(A\) là một biến cố của phép thử đó. Xác suất của biến cố \(A\) là
Chọn ngẫu nhiên một số tự nhiên từ 1 đến 10. Xác suất của biến cố \(A\): “Số được chọn là 10” là
II. Thông hiểu
Một hộp có 3 quả bóng được đánh số lần lượt từ 1 đến 3. Bạn An và bạn Hoàng lần lượt lấy ra ngẫu nhiên 1 quả bóng từ hộp. Không gian mẫu của phép thử là
Không gian mẫu của phép thử “Bạn An liệt kê các số có 2 chữ số chia hết cho 5” có bao nhiêu phần tử?