IMG-LOGO

Câu hỏi:

05/01/2025 4

Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 6{\rm{ cm}}\] và \[AC = 8{\rm{ cm}}\] ngoại tiếp đường tròn \[\left( {I;{\rm{ }}r} \right)\]. Bán kính \[r\] của đường tròn là

A. 1 cm.

B. 2 cm.

Đáp án chính xác

C. 3 cm.

D. 4 cm.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho  Δ A B C  vuông tại  A , có  A B = 6 c m  và  A C = 8 c m  ngoại tiếp đường tròn  ( I ; r ) . Bán kính  r  của đường tròn là (ảnh 1)

Đường tròn \[\left( {I;{\rm{ }}r} \right)\] tiếp xúc với các cạnh \[AB,{\rm{ }}AC,{\rm{ }}BC\] theo thứ tự \[M,{\rm{ }}N,{\rm{ }}P\].

Ta có: \({S_{AIB}} = \frac{1}{2}IM \cdot AB = \frac{1}{2} \cdot r \cdot AB & \left( 1 \right)\)

\({S_{AIC}} = \frac{1}{2}IN \cdot AC = \frac{1}{2} \cdot r \cdot AC & \left( 2 \right)\)

\({S_{BIC}} = \frac{1}{2}r.BC & & & \left( 3 \right)\)

Cộng vế theo vế ở các biểu thức \(\left( 1 \right),\,\,\left( 2 \right),\,\,\left( 3 \right)\), ta được:

\(\frac{{{S_{AIB}} + {S_{AIC}} + {S_{BIC}}}}{{{S_{ABC}}}} = \frac{1}{2}r\left( {AB + AC + BC} \right)\).

Mà \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\) (cm2), \(BC = \sqrt {{6^2} + {8^2}} = 10\) (cm)

Nên ta có: \(24 = \frac{1}{2}r \cdot \left( {6 + 8 + 10} \right)\) hay \(\frac{1}{2}r \cdot 12 = 24\).

Do đó \(r = 2\,\,{\rm{cm}}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường tròn ngoại tiếp tam giác đều cạnh \(a\) có bán kính bằng

Xem đáp án » 05/01/2025 8

Câu 2:

Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường

Xem đáp án » 05/01/2025 7

Câu 3:

Tâm đường tròn nội tiếp của một tam giác là giao của các đường

Xem đáp án » 05/01/2025 6

Câu 4:

Độ dài cạnh của tam giác đều nội tiếp \[\left( {O;{\rm{ }}R} \right)\] theo \[R\] là

Xem đáp án » 05/01/2025 6

Câu 5:

Diện tích tam giác đều nội tiếp đường tròn \(\left( {O\,;\,\,2\,\,{\rm{cm}}} \right)\) là

Xem đáp án » 05/01/2025 6

Câu 6:

Cho tam giác \[ABC\] vuông tại \[A\], có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 12\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 05/01/2025 6

Câu 7:

Cho tam giác \[ABC\] có \[AB = 6\,\,{\rm{cm}}\]; \[BC = 10{\rm{ cm}}\] và \[AC = 8\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 05/01/2025 6

Câu 8:

I. Nhận biết

Đường tròn ngoại tiếp đa giác là đường tròn

Xem đáp án » 05/01/2025 5

Câu 9:

Trong các phát biểu sau, phát biểu nào là đúng nhất?

Xem đáp án » 05/01/2025 5

Câu 10:

II. Thông hiểu

Đường tròn nội tiếp hình vuông cạnh \[a\] có bán kính là

Xem đáp án » 05/01/2025 5

Câu 11:

Cho \[\left( {O;{\rm{ }}4} \right)\] có dây \[AC\] bằng cạnh hình vuông nội tiếp và dây \[BC\] bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm \[C\] và \[A\] nằm cùng phía với \[BO\]). Số đo góc \[ACB\] là

Xem đáp án » 05/01/2025 5

Câu 12:

III. Vận dụng

Cho \[\Delta ABC\] cân tại \[A\] nội tiếp đường tròn \[\left( O \right)\]. Gọi \[E,{\rm{ }}F\] theo thứ tự là hình chiếu của \[\left( O \right)\] lên \[AB\] và \[AC\]. Khẳng định nào sau đây là đúng?

Xem đáp án » 05/01/2025 5

Câu 13:

Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH = \frac{{12}}{5}\] cm và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Bán kính \[R\] của đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 05/01/2025 5

Câu 14:

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

Xem đáp án » 05/01/2025 4

Câu hỏi mới nhất

Xem thêm »
Xem thêm »