Gọi số phức thỏa mãn và có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab=-2
B. ab=2
C. ab=1
D. ab=-1
Đáp án C
Phương pháp
Gọi số phức đã cho có dạng . Sử dụng giả thiết để đưa ra một hệ cho a, b giải trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
Ta có:
Do z không là số thực nên ta phải có (2)
Ta lại có
Từ (1), (2), (3) ta có hệ
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z.
Gọi S là tập hợp các số thực m sao cho với mỗi có đúng một số phức thỏa mãn và là số thuần ảo. Tính tổng của các phần tử của tập S.
Trong tập các số phức, cho phương trình (1). Gọi là một giá trị của m để phương trình (1) có hai nghiệm phân biệt thỏa mãn Hỏi trong khoảng (0;20) có bao nhiêu giá trị m ?
Cho hai số phức và .
Tính tổng phần thực và phần ảo của số phức .
Cho số phức z và w thỏa mãn z+w=3+4i và .
Tìm giá trị lớn nhất của biểu thức .
Cho i là đơn vị ảo. Gọi S là tập hợp các số nguyên dương n có 2 chữ số thỏa mãn là số nguyên dương. Số phần tử của S là
Cho số phức z thỏa mãn điều kiện .
Tìm giá trị lớn nhất của biểu thức