Từ một hộp chứa 12 quả cầu, trong đó có 8 quả màu đỏ, 3 quả màu xanh và 1 quả màu vàng, lấy ngẫu nhiên 3 quả. Xác suất để lấy được 3 quả cầu có đúng hai màu bằng :
A.
B.
C.
D.
Chọn C
Số phần tử của không gian mẫu là:
Gọi A là biến cố: “Lấy được 3 quả cầu có đúng hai màu”.
- Trường hợp 1: Lấy 1 quả màu vàng và 2 quả màu đỏ có: cách
- Trường hợp 2: Lấy 1 quả màu vàng và 2 quả màu xanh có: cách
- Trường hợp 3: Lấy 1 quả màu đỏ và 2 quả màu xanh có: cách
- Trường hợp 4: Lấy 1 quả màu xanh và 2 quả màu đỏ có: cách
Số kết quả thuận lợi của biến cố A là: cách
Xác suất cần tìm là:
Cách 2: Lấy 3 quả bất kì trừ đi trường hợp 3 quả khác màu (1 Đ, 1X, 1 V), và 3 quả chung 1 màu ( cùng đỏ hoặc cùng xanh). ĐS: (220-81)/220. Chọn C.
Cho tam giác ABC với các cạnh AB = c , AC = b, BC = a . Gọi R , r , S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC . Trong các phát biểu sau, phát biểu nào sai?
Trong mặt phẳng Oxy, cho đường tròn (C): . Đường thẳng (d) đi qua M(2;3) cắt (C) tại hai điểm A, B. Tiếp tuyến của đường tròn tại A và cắt nhau tại E. Biết và phương trình đường thẳng (d) có dạng với . Khi đó bằng:
Trong mặt phẳng Oxy , đường thẳng. Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng ?
Có bao nhiêu giá trị nguyên của tham số để phương trình có nghiệm?
Trong mặt phẳng , cho điểm và elip . là 2 điểm thuộc sao cho đều, biết tọa độ của và có tung độ âm. Khi đó bằng:
Cho hình chữ nhật ABCD có cạnh AB=4 BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND = 3NC . Khi đó bán kính của đường tròn ngoại tiếp tam giác AMN bằng
Cho hàm số có đồ thị (C). Hỏi có bao nhiêu điểm trên đường thẳng sao cho từ đó kẻ được đúng hai tiếp tuyến đến (C)?
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. M là điểm trên cạnh BC sao cho MB=2MC. Khi đó đường thẳng MG song song với mặt phẳng nào dưới đây?
Cho hình chóp S ABC . có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với . Gọi I là trung điểm cạnh AC , H là hình chiếu của I trên SC . Khẳng định nào sau đây đúng?