Một chiếc hộp hình chữ nhật có kích thước Người ta xếp những cây bút chì chưa vuốt có hình lăng trụ lục giác đều (đang để lộn xộn như trong ảnh dưới đây) với chiều dài 10 cm và thể tích vào trong hộp sao cho chúng được xếp sát nhau (như hình vẽ mô phỏng phía dưới) . Hỏi có thể chứa được tối đa bao nhiêu cây bút chì ?
A. 144
B. 156
C. 221
D. 576
ĐÁP ÁN B
Cây bút chì có hình dạng là một khối lăng trụ lục giác đều với thể tích và chiều dài 10 cm ( thực chất chính là chiều cao của khối lăng trụ). Từ đây ta xác định được diện tích đáy:
Gọi a(mm) là độ dài cạnh đáy của cây bút chì, ta có công thức diện tích của đáy bút chì là
Từ đây, ta tìm được độ dài của lục giác đều:
Suy ra:
Dựa vào kích thước của chiếc hộp, ta có số cây viết xếp được theo chiều ngang là (cây bút) và theo chiều dọc là hay nói cách khác 13 cây bút (dù kết quả là 13,86 thì cũng chỉ xếp được tối đa 13 cây bút). Suy ra tổng số bút chứa được trong hộp là: cây bút.
Hình bên là đồ thị của ba hàm số được vẽ trên cùng một hệ trục trục tọa độ. Khẳng định nào sau đây là khẳng định đúng?
Cho hình chóp S.ABCD có đáy là hình chữ nhật, Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
Cho hàm số Tìm m để tiếp tuyến của tại điểm có hoành độ tạo với hai trục tọa độ một tam giác có diện tích bằng 25/2.
Ba đỉnh của một hình bình hành có tọa độ là Diện tích của hình bình hành đó bằng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC . Khẳng định nào sau đây SAI?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng Tính góc giữa hai đường thẳng SB và AC.
Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng.
Cho đồ thị Tất cả giá trị của tham số m để cắt trục hoành tại ba điểm phân biệt có hoành độ thỏa là