Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc. Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
A. D = (a – b)(a + c)(c – b); D = 90000
B. D = (a – b)(a + c)(c – b); D = 108000
C. D = (a – b)(a + c)(c + b); D = -86400
D. D = (a – b)(a – c)(c – b); D = 105840
Ta có
D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc
= ab2 + ac2 – bc2 – ba2 + ca2 + cb2 – 2abc
= (ab2 – a2b) + (ac2 – bc2) + (a2c – 2abc + b2c)
= ab(b – a) + c2(a – b) + c(a2 – 2ab + b2)
= -ab(a – b) + c2(a – b) + c(a – b)2
= (a – b)(-ab + c2 + c(a – b))
= (a – b)(-ab + c2 + ac – bc)
= (a – b)[(-ab + ac) + (c2 – bc)]
= (a – b)[a(c – b) + c(c – b)]
= (a – b)(a + c)(c – b)
Với a = 99; b = -9; c = 1, ta có
D = (99 – (-9))(99 + 1)(1 – (-9)) = 108.100.10 = 108000
Đáp án cần chọn là: B
Gọi x1; x2 (x1 > x2) là hai giá trị thỏa mãn x2 + 3x – 18 = 0. Khi đó bằng
Gọi x0 < 0 là giá trị thỏa mãn x4 + 2x3 – 8x – 16 = 0. Chọn câu đúng
Ta có (x – 1)(x – 2)(x + 4)(x + 5) – 27 = (x2 + 3x + a)(x2 + 3x + b) với a, b là các số nguyên. Khi đó a + b bằng
Gọi x1; x2 là hai giá trị thỏa mãn 3x2 + 13x + 10 = 0. Khi đó 2x1.x2 bằng
Gọi x0 là giá trị thỏa mãn x4 – 4x3 + 8x2 – 16x + 16 = 0. Chọn câu đúng
Ta có (x + 2)(x + 3)(x + 4)(x + 5) – 24 = (x2 + 7x + a)(x2 + 7x + b) với a, b là các số nguyên và a < b. Khi đó a – b bằng