Cho hàm số có đồ thị , biết rằng đồ thị luôn đi qua hai điểm cố định A, B. Có bao nhiêu số nguyên dương m thuộc đoạn [-2020;2020] để có tiếp tuyến vuông góc với đường thẳng ?
A. 4041.
B. 2021.
C. 2019.
D. 2020.
Chọn D.
Hàm số được viết lại thành
Một điểm là điểm cố định của đồ thị hàm số thì phương trình phải nghiệm đúng với mọi m xảy ra khi và chỉ khi
Giả sử khi đó hệ số góc của đường thẳng AB là k=4
Đặt
Để trên đồ thị hàm số có điểm mà tiếp tuyến tại đó vuông góc với đường thẳng AB thì hệ số góc tại tiếp điểm phải bằng Điều đó xảy ra khi và chỉ khi có nghiệm.
Ta có
Phương trình
Phương trình (1) có nghiệm khi
Với nên các số nguyên dương là
Vậy có 2020 số thỏa mãn yêu cầu bài toán.
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt phẳng (ABC) một góc . Thể tích khối lăng trụ ABC.A'B'C' bằng
Cho khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với đáy một góc . Thể tích của khối chóp đó bằng
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng ( các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a biết rằng (A'BC) hợp với đáy (ABC) một góc 45.Thể tích khối lăng trụ ABC.A'B'C' bằng
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Cho hàm số y=f(x) xác định trên R\{0} có bảng biến thiên như hình vẽ.
Số nghiệm của phương trình f(x)+3=0 là
Cho hình chóp tứ giác S.ABCD có , đáy là ABCD là hình vuông cạnh 8. Thể tích V của khối chóp S.ABC là
Có bao nhiêu giá trị nguyên dương của tham số m không vượt quá 2020 để hàm số có ba điểm cực trị
Cho hàm số thỏa mãn . Gọi S là tập hợp tất cả các giá trị của tham số m sao cho với . Tổng của tất cả các phần tử của S bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Cạnh bên SA vuông góc với mặt phẳng (ABCD) và . Thể tích V của khối chóp S.ABCD là
Cho khối chóp S.ABCD có đáy là hình bình hành, thể tích bằng 1. Gọi M là trung điểm cạnh SA, mặt phẳng chứa MC song song với BD chia khối chóp thành hai khối đa diện. Thể tích V khối đa diện chứa đỉnh A là
Cho đa giác đều có 10 cạnh. Số tam giác có 3 đỉnh là ba đỉnh của đa giác đều đã cho là
Cho hàm số (m là tham số thực) thoả mãn . Mệnh đề nào dưới đây đúng?
Mặt phẳng (A'B'C') chia khối lăng trụ ABC.A'B'C' thành hai khối đa diện AA'B'C' và ABCC'B' có thể tích lần lượt là . Khẳng định nào sau đây đúng?