Tính tổng các giá trị nguyên của tham số m trên để hàm số nghịch biến trên khoảng .
A.209
B.207
C.-209
D.-210
Phương pháp giải:
- Đặt , xét trên khoảng , tìm khoảng giá trị tương ứng của t, xét xem t có cùng tính tăng giảm với x hay không.
- Đưa bài toán về dạng tìm m đểhàm số đơn điệu trên khoảng cho trước.
Giải chi tiết:
Đặt , với thì t giảm từ 1 về 0.
Khi đó bài toán trở thành: Tìm m để hàm số đồng biến trên (*).
TXĐ: Hàm số đã cho xác định trên . Ta có .
Do đó .
Kết hợp điều kiện đề bài ta có .
Vậy tổng các giá trị của m thỏa mãn là .
Đáp án C
Cho hàm số có đồ thị là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ bên. Hỏi phương trình có bao nhiêu nghiệm phân biệt.
Cho hình chóp có đáy là hình chữ nhật với . Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng .
Cho hàm số là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn để hàm số có đúng 5 điểm cực trị?
Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn là hai chữ số lẻ?
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau?
Cho các số thực thỏa mãn . Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tổng bằng: