Tính diện tích xung quanh một hình trụ có chiều cao 20m, chu vi đáy bằng 5m.
A.
B.
C.
D.
Tam giác ABC vuông cân đỉnh A có cạnh huyền là 2. Quay hình tam giác ABC quanh trục BC thì được khối tròn xoay có thể tích là:
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau, OA = , OB= OC =a. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC) Tính thể tích khối tứ diện OABH
Cho khối nón có chiều cao bằng 24cm, độ dài đường sinh bằng 26cm. Tính thể tích V của khối nón tương ứng
Khối nón (N) có bán kính đáy bằng 3 và diện tích xung quanh bằng . Thể tích V của khối nón (N) là:
Khối chóp O.ABC có OB = OC =a, Khi đó thể tích khối tứ diện O.ABC bằng
Tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng (BCD), AB = 2a. M là trung điểm của AD, gọi là góc giữa đường thẳng CM với mp(BCD), khi đó
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây là đúng ? Tính bán kính mặt cầu ngoại tiếp hình chóp theo a.
Cho hình chóp S. ABC có tam giác ABC có góc A bằng và BC = 2a. Tính bán kính mặt cầu ngoại tiếp hình chóp theo a.
Thiết diện qua trục của một hình nón (N) là một tam giác vuông cân, có cạnh góc vuông bằng a diện tích toàn phần của hình nón (N) bằng:
Cho hình chóp S. ABCD có SA vuông góc ABCD, ABCD là hình chữ nhật. SA = AD = 2a. Góc giữa (SBC) và mặt đáy (ABCD) là . Gọi G là trọng tâm tam giác SBC. Thể tích khối chóp S. AGD là
Tính diện tích lớn nhất của một hình chữ nhật nội tiếp trong nửa đường tròn bán kính R = 6 cm nếu một cạnh của hình chữ nhật nằm dọc theo đường kính của hình tròn mà hình chữ nhật đó nội tiếp
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x, 0 < x <h. (C ) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất
Hình trụ có bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy, với OO’ = 2r .Một mặt cầu (S ) tiếp xúc với hai đáy hình trụ tại O và O'. Gọi VC và VT lần lượt là thể tích khối cầu và khối trụ tương ứng. Khi đó bằng:
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = . Hình chiếu của S trên mặt phẳng (ABCD) là trung điểm H của BC, SH = . Tính bán kính mặt cầu ngoại tiếp hình chóp S. BHD
Cho hình trụ có diện tích toàn phần là và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Tính thể tích khối trụ.