Cho đồ thị Đường thẳng d đi qua điểm I(1; 1) cắt (C) tại hai điểm phân biệt A và B. Khi đó diện tích tam giác MAB với M(0; 3) đạt giá trị nhỏ nhất thì độ dài đoạn AB bằng:
A.
B.
C.
D.
Phương pháp:
- Sử dụng: Vì I là tâm đối xứng của đồ thị hàm số
- Chứng minh
- Kẻ ta có chứng minh để đạt giá trị nhỏ nhất thì đạt giá trị nhỏ nhất đạt giá trị nhỏ nhất.
- Viết phương trình đường thẳng MI, tính , sử dụng BĐT Cô-si để tìm GTNN.
- Suy ra tọa độ điểm A tính IA và suy ra AB
Cách giải:
Dễ thấy I là tâm đối xứng của đồ thị hàm số (giao điểm 2 đường tiệm cận).
Vì d đi qua A và cắt đồ thị tại 2 điểm phân biệt A, B nên
Ta có:
Kẻ ta có với
Để đạt giá trị nhỏ nhất thì đạt giá trị nhỏ nhất đạt giá trị nhỏ nhất.
Phương trình đường thẳng MI là
Gọi ta có
Giả sử A là điểm nằm bên phải đường thẳng
Áp dụng BĐT Cô-si ta có:
Dấu “=” xảy ra
Khi đó
Vậy để đạt giá trị nhỏ nhất thì
Chọn A.
Một chiếc xe đua đạt tới vận tốc lớn nhất là 360 km/h. Đồ thị bên biểu thị vận tốc v của xe trong 5 giây đầu tiên kể từ lúc xuất phát. Đồ thị trong 2 giây đầu là một phần của một parabol định tại gốc tọa độ O, giây tiếp theo là đoạn thẳng và sau đúng ba giây thì xe đạt vận tốc lớn nhất. Biết rằng mỗi đơn vị trục hoành biểu thị 1 giây, mỗi đơn vị trực tung biểu thị 10 m/s và trong 5 giây đầu xe chuyển động theo đường thẳng. Hỏi trong 5 giây đó xe đã đi được quãng đường là bao nhiêu?
Cho góc ở đỉnh của một hình nón bằng Gọi r, h, l lần lượt là bán kính đáy, đường cao, đường sinh của hình nón đó. Khẳng định nào sau đây đúng?
Một tổ học sinh có 12 bạn, gồm 7 nam và 5 nữ. Cần chọn một nhóm 3 học sinh của tổ đó để làm vệ sinh lớp học. Hỏi có bao nhiêu cách chọn sao cho trong nhóm có cả nam và nữ?
Có bao nhiêu số phức z đôi một khác nhau thỏa mãn và là số thực?