Dãy số nào trong các dãy số sau không phải là cấp số nhân:
A.\[{u_n} = {5^n}\]
B. \[{u_n} = {\left( {2 - \sqrt 3 } \right)^{n + 1}}\]
C. \[{u_n} = 5n + 1\]
D. \[{u_n} = {4^n}\]
Ta có\[{u_n} = {5^n}\] nên\[{u_{n + 1}} = {5^{n + 1}} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\] không đổi\[\forall n \ge 1\]
Vậy dãy số\[\left( {{u_n}} \right)\] có \[{u_n} = {5^n}\] là cấp số nhân.
Tương tự ta cũng có dãy số ở đáp án D là cấp số nhân.
Ta có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\] nên\[{u_{n + 1}} = 2{( - \sqrt 3 )^{n + 2}} = ( - \sqrt 3 ){u_n} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = ( - \sqrt 3 )\] không đổi\[\forall n \ge 1\]
Vậy dãy số \[\left( {{u_n}} \right)\] có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\] là cấp số nhân.
Ta có \[{u_n} = 5n + 1\] nên\[{u_1} = 8;{u_2} = 13;{u_3} = 18 \Rightarrow \frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\]Vậy dãy số \[\left( {{u_n}} \right)\]không là cấp số nhân.
Đáp án cần chọn là: C
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \[{x^3} - 7{x^2} + 2({m^2} + 6m)x - 8 = 0.\]
Cho cấp số nhân \[\left( {{u_n}} \right)\]có \[{u_1} = - 3\;v\`a \;q = - 2.\]. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Cho cấp số nhân \[\left( {{u_n}} \right)\]có \[{u_1} = - 1;q = \frac{{ - 1}}{{10}}\]. Số \[\frac{1}{{{{10}^{103}}}}\] là số hạng thứ bao nhiêu?
Tìm x để các số \[2;8;x;128\;\]theo thứ tự đó lập thành một cấp số nhân.
Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất. Tìm góc lớn nhất:
Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng 36. Một cấp số cộng có n số hạng, công sai d=4, tổng các số hạng bằng 510. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó n bằng:
Tính tổng \[{S_n} = 1 + 11 + 111 + ... + 11...11\] (có 10 chữ số 1)
Cho cấp số nhân \[\left( {{u_n}} \right)\]biết: \[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.
Cho cấp số nhân\[\left( {{u_n}} \right)\]biết:\[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.
Tìm số hạng đầu và công bội của cấp số nhân \[({u_n})\;\]có công bội q>0 . Biết \[{u_2} = 4;{u_4} = 9\;\].
Cho hai số x và y biết các số \[x - y;x + y;3x - 3y\] theo thứ tự lập thành cấp số cộng và các số \[x - 2;y + 2;2x + 3y\;\] theo thứ tự đó lập thành cấp số nhân. Tìm x;y
Cho cấp số nhân \[\left( {{u_n}} \right)\]biết: \[{u_1} = 3,{u_5} = 48\;\]. Lựa chọn đáp án đúng.
Tính tổng \[{S_n} = 1 + 2a + 3{a^2} + 4{a^3} + ... + \left( {n + 1} \right){a^n}\] (\[a \ne 1\;\]là số cho trước)
Dân số của thành phố A hiện nay là 3 triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là 2%. Dân số của thành phố A sau 3 năm nữa sẽ là:
Cho cấp số cộng \[\left( {{u_n}} \right)\]với công sai khác 0. Biết rằng các số \[{u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\;\] theo thứ tự đó lập thành cấp số nhân với công bội \[q \ne 0\]. Khi đó q bằng: