Cho hình vẽ dưới đây, biết CE = DE và \(\widehat {CEA} = \widehat {DEA}\).
Khẳng định sai là
Đáp án đúng là: D
Xét \(\Delta AEC\) và \(\Delta AED\) có:
CE = DE (theo giả thiết)
\(\widehat {CEA} = \widehat {DEA}\) (theo giả thiết)
AE là cạnh chung
Do đó \(\Delta AEC = \Delta AED\) (c.g.c)
⇒ AC = AD (2 cạnh tương ứng) và \(\widehat {CAE} = \widehat {DAE}\) (2 góc tương ứng)
Xét \(\Delta ABC\) và \(\Delta ABD\) có:
AC = AD (chứng minh trên)
\(\widehat {CAE} = \widehat {DAE}\) (chứng minh trên)
AB là cạnh chung
Do đó \(\Delta ABC = \Delta ABD\) (c.g.c)
⇒ \(\widehat {ACB} = \widehat {ADB}\) (2 góc tương ứng)
Vậy khẳng định D sai.
Cho góc xOy khác góc bẹt. Trên tia phân giác của góc xOy lấy điểm I tùy ý, qua I vẽ đường thẳng vuông góc với OI cắt Ox ở E và cắt Oy ở F. Trong các khẳng định sau, khẳng định nào đúng?
Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.
Cho tam giác ABC và tam giác MNP có \(\widehat A = \widehat P\); AC = MP, \[\widehat C = \widehat M\]. Phát biểu nào sau đây đúng?
Cho tam giác ABC và tam giác MNP có \(\widehat A = \widehat P\); AB = PN, AC = PM. Phát biểu nào sau đây đúng?
Cho tứ giác ABCD, \[AB{\rm{//}}DC\], \[AD{\rm{//}}BC\], O là giao của AC và BD. Câu nào sau đây đúng?
Cho tam giác ABC và tam giác \[NPM\] có BC = PM; \(\widehat B = \widehat P\). Cần điều kiện gì để tam giác ABC bằng tam giác NPM theo trường hợp cạnh – góc – cạnh?
Cho \[\Delta DEF\] có \(\widehat E = \widehat F\). Tia phân giác của góc D cắt EF tại I. Ta có
Cho tam giác ABC và tam giác DEF có AB = DE, AC = DF, \(\widehat A = \widehat D\). Biết \(\widehat B = 60^\circ \). Số đo góc E là
Cho tam giác ABC và tam giác \[NPM\] có BC = PM; \(\widehat B = \widehat P\). Cần điều kiện gì để tam giác ABC bằng tam giác NPM theo trường hợp góc – cạnh – góc?
Cho hình vẽ dưới đây, biết đoạn thẳng JK song song và bằng đoạn thẳng ML.
Khẳng định đúng là
Cho tam giác ABC và tam giác DEF có AB = DE, \(\widehat B = \widehat E,{\rm{ }}\widehat A = \widehat D\). Biết AC = 6 cm. Độ dài DF là
Cho hình vẽ sau, trong đó \(AB{\rm{//}}CD\), AB = CD. Khẳng định đúng là