Điểm kiểm tra môn toán của học sinh lớp 7A được thống kê như sau:
7 |
10 |
5 |
7 |
8 |
10 |
6 |
5 |
7 |
8 |
7 |
6 |
4 |
10 |
3 |
4 |
9 |
8 |
9 |
9 |
4 |
7 |
3 |
9 |
2 |
3 |
7 |
5 |
9 |
7 |
5 |
7 |
6 |
4 |
9 |
5 |
8 |
5 |
6 |
3 |
a) Dấu hiệu ở đây là gì?
b) Hãy lập bảng “tần số”.
c) Hãy tính số trung bình cộng và tìm mốt của dấu hiệu?
d) Nhận xét về việc học toán của học sinh lớp 7A.
a) Dấu hiệu: Điểm kiểm tra môn toán của mỗi học sinh lớp 7A.
b) Bảng “tần số”:
Giá trị (x) |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Tần số (n) |
1 |
4 |
4 |
6 |
4 |
8 |
4 |
6 |
3 |
N = 30 |
c) Số trung bình cộng:
\(\overline X = \frac{{2\,.\,1 + 3\,.\,4 + 4\,.\,4 + 5\,.\,6 + 6\,.\,4 + 7\,.\,8 + 8\,.\,4 + 9\,.\,6 + 10\,.\,3}}{{30}} \approx \,\,8,53\) (điểm).
Giá trị có tần số lớn nhất là 7 (tần số của giá trị 7 là 8).
Do đó một của dấu hiệu là Mo = 7.
Vậy số trung bình cộng là \(\overline X \approx \,\,8,53\) điểm và mốt của dấu hiệu là Mo = 7.
d) Nhận xét về việc học toán của học sinh lớp 7A:
- Số các giá trị của dấu hiệu: 30.
- Số các giá trị khác nhau của dấu hiệu: 9.
- Điểm cao nhất là 10 điểm; điểm thấp nhất là 2 điểm.
- Giá trị có tần số lớn nhất là 7 (tần số của giá trị 7 là 8).
- Các giá trị thuộc vào khoảng 5 điểm; 7 điểm và 9 điểm.
Tính giá trị của biểu thức 2x4 − 5x2 + 4x tại x = 1 và \(x = \frac{{ - 1}}{2}\).
Cho ΔABC vuông tại A. Đường phân giác BD. Vẽ DH ⊥ BC
(H ∈ BC).
a) Chứng minh: ΔABD = ΔHBD.
b) Chứng minh: AD < DC.
c) Trên tia đối AB lấy điểm K sao cho AK = HC. Chứng minh ΔDKC cân.Cho \(A = \frac{{5n + 1}}{{n + 1}}\) (n ≠ −1). Tìm \(n \in \mathbb{Z}\) để biểu thức A đạt giá trị nguyên.