Cho ΔABC vuông tại A. Đường phân giác BD. Vẽ DH ⊥ BC
(H ∈ BC).
a) Chứng minh: ΔABD = ΔHBD.
b) Chứng minh: AD < DC.
c) Trên tia đối AB lấy điểm K sao cho AK = HC. Chứng minh ΔDKC cân.
GT |
ΔABC vuông tại A, đường phân giác BD; DH ⊥ BC (H ∈ BC); Trên tia đối AB lấy điểm K sao cho AK = HC. |
KL |
a) ΔABD = ΔHBD. b) AD < DC. c) ΔDKC cân. |
a) Xét ΔABD và ΔHBD có:
\(\widehat {BAD} = \widehat {BHD} = {90^o}\)
\(\widehat {ABD} = \widehat {HBD}\) (vì BD là tia phân giác của \(\widehat {ABC}\)).
Cạnh BD chung.
Do đó ΔABD = ΔHBD (cạnh huyền – góc nhọn).
b) Từ câu a: ΔABD = ΔHBD suy ra AD = DH (hai cạnh tương ứng) (1)
ΔDHC vuông tại H nên DH < DC (2) (trong tam giác vuông cạnh đối diện với góc vuông là cạnh lớn nhất).
Từ (1) và (2) suy ra: AD < DC.
c) Xét ΔAKD và ΔHCD có:
\(\widehat {DAK} = \widehat {CHD} = {90^o}\)
AD = DH (cmt)
\[\widehat {ADK} = \widehat {CDH}\] (hai góc đối đỉnh)
Do đó ΔAKD = ΔHCD (c.g.c).
Suy ra KD = DC (hai cạnh tương ứng).
Vậy ΔDKC cân tại D.Tính giá trị của biểu thức 2x4 − 5x2 + 4x tại x = 1 và \(x = \frac{{ - 1}}{2}\).
Điểm kiểm tra môn toán của học sinh lớp 7A được thống kê như sau:
7 |
10 |
5 |
7 |
8 |
10 |
6 |
5 |
7 |
8 |
7 |
6 |
4 |
10 |
3 |
4 |
9 |
8 |
9 |
9 |
4 |
7 |
3 |
9 |
2 |
3 |
7 |
5 |
9 |
7 |
5 |
7 |
6 |
4 |
9 |
5 |
8 |
5 |
6 |
3 |
a) Dấu hiệu ở đây là gì?
b) Hãy lập bảng “tần số”.
c) Hãy tính số trung bình cộng và tìm mốt của dấu hiệu?
d) Nhận xét về việc học toán của học sinh lớp 7A.
Cho \(A = \frac{{5n + 1}}{{n + 1}}\) (n ≠ −1). Tìm \(n \in \mathbb{Z}\) để biểu thức A đạt giá trị nguyên.