Cho tam giác ABC cân ở A. Đường phân giác AD và trung tuyến CE cắt nhau tại H. Đường thẳng BH
A. chứa phân giác trong đỉnh B.
B. chứa đường cao kẻ từ B.
C. chứa trung tuyến kẻ từ B.
D. cả ba đáp án A, B và C đều đúng.
Đáp án đúng là: C
cân ở A có AD là đường phân giác nên AD vừa là đường phân giác, vừa là đường trung tuyến của .
có hai đường trung tuyến AD và CE cắt nhau tại H nên H là trọng tâm .
Do đó BH chứa trung tuyến kẻ từ đỉnh B.
Cho tam giác ABC cân tại A có đường cao AD.
a) Tính BC biết AB = 13 cm và AD = 12 cm.
b) Kẻ DI vuông góc với AB tại I. Lấy điểm M trên cạnh AB sao cho I là trung điểm của đoạn thẳng BM. Chứng minh DM = BC.
c) Gọi H là giao điểm của AD và CM, N là giao điểm của BH và AC. Lấy E là điểm thuộc tia đối của tia ID sao cho ID = IE. Chứng minh 3 điểm E, M, N thẳng hàng.
Cho các đa thức
A(x) = 12x3 + 2ax + a2
B(x) = 2x2 - x + a2
Tìm a biết A(1) = B(-2).
Cho hai đa thức:
P(x) = x4 + 3x3 - x + - x3 - 4x; Q(x) = - 4x3 + x4 - 2x - 3x + 2x3.
a) Thu gọn và sắp xếp các đa thức P(x), Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x); P(x) - Q(x).
Cho đa thức P(x) = x3 - 6x2 + 11x - 6. Giá trị nào sau đây KHÔNG là nghiệm của P(x)?
Cho đơn thức T = 3x2y3z. Đơn thức nào sau đây sau khi thu gọn đồng dạng với T.