Xét sự biến thiên của hàm số y = 1 − sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
A. Hàm số đã cho nghịch biến trên khoảng
B. Hàm số đã cho nghịch biến trên khoảng
C. Hàm số đã cho đồng biến trên khoảng
Hàm số đã cho tuần hoàn với chu kì 2π và kết hợp với các đáp án ta xét sự biến thiên của hàm số trên đoạn
- Hàm số y = sinx nghịch biến trên nên hàm số y = 1 − sinx đồng biến trên Do đó chỉ có đáp án D là sai.
Đáp án cần chọn là: D
y = 2sin2 x + cos2 2x:
Cho các mệnh đề sau :
(I): Hàm số y = sinx có chu kì là .
(II): Hàm số y = tanx có tập giá trị là R∖
(III): Đồ thị hàm số y = cosx đối xứng qua trục tung.
(IV): Hàm số y = cotx nghịch biến trên (−π; 0)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên ?
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = cos2x + cosx. Khi đó M + m bằng bao nhiêu?
Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = 3sinx + 4cosx − 1
Xét sự biến thiên của hàm số y = sinx − cosx. Trong các kết luận sau, kết luận nào đúng?