Cho tam giác ABC nhọn. Vẽ đường tròn (O) có đường kính BC, nó cắt cạnh AB, AC theo thứ tự ở D và E.
a) Chứng minh rằng
b) Gọi K là giao điểm của BE, CD. Chứng minh
a) có vuông tại A (theo định lý đảo đường trung tuyến ứng với cạnh huyền)
Chứng minh tương tự
b) Vì là giao điểm của là trực tâm
nên
Cho một tứ giác ABCD có 2 đường chéo AC, BD vuông góc với nhau. Gọi M, N, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng 4 điểm M, N, R, S cùng nằm trên đường tròn.
Cho hình thoi ABCD cạnh a. Gọi R và r lần lượt là bán kính các đường tròn ngoại tiếp tam giác ABD, ABC. Chứng minh rằng:
Cho hình chữ nhật ABCD có AD = 9,3cm, CD = 12,4cm. Chứng minh rằng bốn điểm A, B, C, Dcùng thuộc một đường tròn. Tính bán kính của đường tròn đó.