15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 17. Vị trí tương đối của hai đường tròn có đáp án
15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 17. Vị trí tương đối của hai đường tròn có đáp án
-
34 lượt thi
-
15 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Nếu hai đường tròn phân biệt tiếp xúc nhau thì số điểm chung của hai đường tròn là
Đáp án đúng là: B
Nếu hai đường tròn có duy nhất một điểm chung thì ta nói đó là hai đường tròn tiếp xúc nhau.
Do đó ta chọn phương án B.
Câu 2:
Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r\] cắt nhau tại hai điểm phân biệt và \[OO' = d.\] Chọn khẳng định đúng?
Đáp án đúng là: D
Ta thấy hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r\] cắt nhau khi \[R - r < d < R + r\] với \[R > r.\] </>
Do đó ta chọn phương án D.
Câu 3:
Nếu hai đường tròn không cắt nhau thì số điểm chung của hai đường tròn là
Đáp án đúng là: A
Nếu hai đường tròn không có điểm chung nào thì ta nói đó là hai đường tròn không cắt nhau.
Do đó ta chọn phương án A.
Câu 4:
Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] sao cho \[OO' < R - r\], với \[R > r.\] Khi đó ta nói </>
Đáp án đúng là: B
Vì hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] có \[OO' < R - r\], với \[R > r\] nên ta nói đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]</>
Vậy ta chọn phương án B.
Câu 5:
Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r.\] Ta nói hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau khi
Đáp án đúng là: C
Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r.\] Ta nói hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau khi \[OO' > R + r.\]
Vậy ta chọn phương án C.
Câu 6:
III. Vận dụng
Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là
Đáp án đúng là: B
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)
Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]
Câu 7:
Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là
Đáp án đúng là: A
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) ở ngoài nhau thì \(OI > 5 + R\)
Hay \(7 > 5 + R\) suy ra \(R < 2{\rm{\;cm}}.\)
Trong các phương án trên, ta thấy chỉ có giá trị \(R = 1{\rm{\;cm}}\) thỏa mãn điều kiện trên.
Vậy ta chọn phương án A.
Câu 8:
Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương đối là
Đáp án đúng là: B
Đường tròn \(\left( I \right)\) có bán kính \[R = \frac{{12}}{2} = 6{\rm{\;(dm)}}{\rm{.}}\]
Đường tròn \(\left( J \right)\) có bán kính \[R' = \frac{{18}}{2} = 9{\rm{\;(dm)}}{\rm{.}}\]
Ta có \[R + R' = 6 + 9 = 15{\rm{\;(dm)}}{\rm{.}}\]
Do đó \[R + R' = IJ.\]
Vậy hai đường tròn \[\left( I \right),\,\,\left( J \right)\] tiếp xúc ngoài với nhau.
Do đó ta chọn phương án B.
Câu 9:
Cho đường tròn \[\left( {{O_1}} \right)\] và \[\left( {{O_2}} \right)\] tiếp xúc ngoài tại \[A\] và một đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\,\,\left( {{O_2}} \right)\] lần lượt tại \[B,C.\] Tam giác \[ABC\] là
Đáp án đúng là: C
Vì \[{O_1}A = {O_1}B\] nên tam giác \[{O_1}AB\] cân tại \[{O_1}.\] Do đó \[\widehat {{O_1}AB} = \widehat {{O_1}BA}.\]
Chứng minh tương tự, ta được \[\widehat {{O_2}AC} = \widehat {{O_2}CA}.\]
Ta có đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\left( {{O_2}} \right)\] lần lượt tại \[B,C\] nên \[{O_1}B \bot BC\] tại \[B\] và \({O_2}C \bot BC\) tại \(C.\)
Xét tứ giác \({O_1}BC{O_2}\) ta có: \[\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat {B\,} - \widehat {C\,} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{O_1}AB} - \widehat {{O_1}BA}} \right) + \left( {180^\circ - \widehat {{O_2}AC} - \widehat {{O_2}CA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{O_1}AB} + 2 \cdot \widehat {{O_2}AC} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ \]
Suy ra \[\widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ \]
Ta có \[\widehat {{O_1}AB} + \widehat {BAC} + \widehat {{O_2}AC} = 180^\circ \]
Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Vậy tam giác \[ABC\] vuông tại \[A.\]
Do đó ta chọn phương án C.
Câu 10:
Cho hai đường tròn \[\left( {O;R} \right)\] và đường tròn \[\left( {O';r} \right)\] tiếp xúc ngoài với nhau tại \[A.\] Một đường thẳng qua \[A\] cắt \[\left( O \right)\] tại \[B\] và cắt \[\left( {O'} \right)\] tại \[C.\] Cho các nhận định sau:
(i) \[OB\,{\rm{//}}\,O'C.\]
(ii) \(OO' = R - r\) với \[R > r.\]
Khẳng định nào sau đây là đúng nhất?
Đáp án đúng là: A
⦁ Ta có \(O'A = O'C\) nên tam giác \[O'AC\] cân tại \[O'.\] Do đó \(\widehat {O'CA} = \widehat {{A_1}}.\)
Chứng minh tương tự, ta được \[\widehat {OBA} = \widehat {{A_2}}.\]
Lại có \[\widehat {{A_1}} = \widehat {{A_2}}\] (đối đỉnh) nên \[\widehat {O'CA} = \widehat {OBA}.\]
Mà hai góc này ở vị trí so le trong nên \[OB\,{\rm{//}}\,O'C.\] Do đó (i) là nhận định đúng.
⦁ Vì hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] tiếp xúc ngoài với nhau tại \[A\] nên \(OO' = R + r.\) Do đó (ii) là nhận định sai.
Vậy ta chọn phương án A.
Câu 11:
Cho nửa đường tròn \(\left( {O;R} \right),\) đường kính \[AB.\] Vẽ nửa đường tròn tâm \[O',\] đường kính \[AO\] (cùng phía với nửa đường tròn \[\left( O \right)\]). Một đường thẳng bất kì qua \[A\] cắt \(\left( O \right),\,\,\left( {O'} \right)\) lần lượt tại \[C,D.\] Nếu \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] thì
Đáp án đúng là: B
Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)
Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]
Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]
Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]
Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]
Do đó \[BC = R\sqrt 2 .\]
Vậy ta chọn phương án B.
Câu 12:
Cho tam giác \[ABC\] vuông tại \[A,\] vẽ đường tròn \[\left( {B;BA} \right)\] và đường tròn \[\left( {C;CA} \right)\] chúng cắt nhau tại \[D\] \((D\) khác \[A\]). Kết luận nào sau đây đúng nhất?
Đáp án đúng là: D
Xét \[\Delta ABC\] và \[\Delta DBC,\] có:
\[BA = BD;\] \[CA = CD;\] \[BC\] là cạnh chung.
Do đó \[\Delta ABC = \Delta DBC\] (c.c.c)
Suy ra \[\widehat {BDC} = \widehat {BAC} = 90^\circ .\]
Vì vậy \[BD \bot CD\] tại điểm \[D\] thuộc đường tròn \[\left( {B;BA} \right).\]
Khi đó \[CD\] là tiếp tuyến của đường tròn \[\left( {B;BA} \right).\]
Do đó cả A, B, C đều đúng.
Vậy ta chọn phương án D.
Câu 13:
III. Vận dụng
Cho đường tròn \[\left( {A;10{\rm{\;cm}}} \right),\,\,\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right)\] tiếp xúc ngoài với nhau đôi một. Hai đường tròn \[\left( B \right)\] và \[\left( C \right)\] tiếp xúc nhau tại \[A'.\] Đường tròn \[\left( A \right)\] tiếp xúc với đường tròn \[\left( B \right)\] và \[\left( C \right)\] lần lượt tại \[C',B'.\] Cho các nhận định sau:
(i) \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( B \right)\] và \[\left( C \right).\]
(ii) \[AA' = 15{\rm{\;cm}}.\]
Khẳng định nào sau đây là đúng nhất?
Đáp án đúng là: A
Ta có:
⦁ \[AB = AC' + C'B = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[AC = AB' + B'C = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[BC = BA' + A'C = 15 + 15 = 30{\rm{\;(cm)}}{\rm{.}}\]
Suy ra tam giác \[ABC\] cân tại \[A.\]
Vì \[BA' = A'C = 15{\rm{\;(cm)}}\] nên \[A'\] là trung điểm \[BC.\]
Tam giác \[ABC\] cân tại \[A\] có \[AA'\] là đường trung tuyến nên \[AA'\] cũng là đường cao của tam giác \[ABC\] hay \[AA' \bot BC\] tại \[A'\] thuộc cả hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Vì vậy \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Áp dụng định lí Pythagore cho tam giác \[AA'B\] vuông tại \[A',\] ta được: \[A{B^2} = A{A'^2} + B{A'^2}.\]
Suy ra \[A{A'^2} = A{B^2} - B{A'^2} = {25^2} - {15^2} = 400.\] Do đó \[AA' = 20{\rm{\;(cm)}}{\rm{.}}\]
Do đó chỉ có nhận định (i) là đúng. Vậy ta chọn phương án A.
Câu 14:
Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là
Đáp án đúng là: C
Gọi \[H\] là giao điểm của \[OO'\] và \[AB.\]
Vì \[{4^2} + {3^2} = {5^2}\] hay \(O{A^2} + O'{A^2} = O{O'^2}\) nên theo định lí Pythagore đảo, ta được tam giác \[OO'A\] vuông tại \[A.\]
Vì \[OA = OB = 4{\rm{\;(cm)}}\] nên \[O\] nằm trên đường trung trực của đoạn \[AB.\]
Chứng minh tương tự, ta được \[O'\] nằm trên đường trung trực của đoạn \[AB.\]
Khi đó \[OO'\] là đường trung trực của đoạn \[AB.\]
Vì vậy \[OO' \bot AB\] tại \[H\] và \[H\] là trung điểm \[AB.\]
Xét \[\Delta OAH\] và \[\Delta OO'A,\] có:
\[\widehat {OHA} = \widehat {OAO'} = 90^\circ \] và \[\widehat {AOH}\] là góc chung.
Do đó (g.g)
Suy ra \[\frac{{AH}}{{O'A}} = \frac{{OA}}{{OO'}}\] nên \[AH = \frac{{OA}}{{OO'}} \cdot O'A = \frac{4}{5} \cdot 3 = \frac{{12}}{5}{\rm{\;(cm)}}{\rm{.}}\]
Vì \[H\] là trung điểm nên \[AB = 2AH = 2 \cdot \frac{{12}}{5} = \frac{{24}}{5} = 4,8{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án C.
Câu 15:
Cho đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] tiếp xúc ngoài tại \[A.\] Kẻ đường kính \[AB\] của đường tròn \[\left( O \right)\] và đường kính \[AC\] của đường tròn \[\left( {O'} \right).\] Gọi \[DE\] là tiếp tuyến của cả hai đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] với hai tiếp điểm \[D \in \left( O \right)\] và \[E \in \left( {O'} \right)\] \((DE\) không cắt đoạn \(O'O).\) Gọi \[M\] là giao điểm của \[BD\] và \[CE.\] Biết rằng \[\widehat {DOA} = 60^\circ \] và \[OA = 6{\rm{\;cm}}.\] Diện tích tứ giác \[ADME\] bằng
Đáp án đúng là: C
Vì \[OA = OD\] nên tam giác \[OAD\] cân tại \[O.\] Do đó \[\widehat {{A_2}} = \widehat {ODA}.\]
Chứng minh tương tự, ta được \[\widehat {{A_1}} = \widehat {O'EA}.\]
Ta có \[DE\] là tiếp tuyến của cả hai đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] với hai tiếp điểm \[D \in \left( O \right)\] và \[E \in \left( {O'} \right)\] nên \[O'E \bot DE\] và \[OD \bot DE.\]
Xét tứ giác \(O'EDO\) ta có: \[\widehat {{{O'}_1}} + \widehat {{O_1}} = 360^\circ - \widehat {O'ED} - \widehat {ODE} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{A_1}} - \widehat {O'EA}} \right) + \left( {180^\circ - \widehat {{A_2}} - \widehat {ODA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{A_1}} + 2 \cdot \widehat {{A_2}} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = 180^\circ \]
Suy ra \[\widehat {{A_1}} + \widehat {{A_2}} = 90^\circ \]
Ta có \[\widehat {{A_1}} + \widehat {{A_2}} + \widehat {EAD} = 180^\circ \]
Suy ra \[\widehat {EAD} = 180^\circ - \left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Tam giác \[CEA\] có \[EO'\] là đường trung tuyến và \[EO' = \frac{{AC}}{2}\] nên tam giác \[CEA\] vuông tại \[E.\]
Chứng minh tương tự, ta được tam giác \[ABD\] vuông tại \[D.\]
Tứ giác \[ADME\] có: \[\widehat {DAE} = \widehat {AEM} = \widehat {ADM} = 90^\circ \] nên tứ giác \[ADME\] là hình chữ nhật.
Tam giác \[OAD\] cân tại \[O\] có \[\widehat {DOA} = 60^\circ \] nên tam giác \[OAD\] là tam giác đều.
Khi đó \[AD = OD = OA = 6{\rm{\;cm}}\] và \[\widehat {ADO} = 60^\circ .\]
Vì \[\widehat {ODE} = 90^\circ \] nên \[\widehat {ODA} + \widehat {ADE} = 90^\circ \]
Suy ra \[\widehat {ADE} = 90^\circ - \widehat {ODA} = 90^\circ - 60^\circ = 30^\circ .\]
Vì tam giác \[DAE\] vuông tại \[A\] nên \[AE = AD \cdot \tan \widehat {ADE} = 6 \cdot \tan 30^\circ = 2\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\]
Do đó diện tích tứ giác \[ADME\] là: \[S = AE \cdot AD = 2\sqrt 3 \cdot 6 = 12\sqrt 3 {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án C.