Chủ nhật, 05/01/2025
IMG-LOGO
Trang chủ Lớp 9 Toán 15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 27. Góc nội tiếp có đáp án

15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 27. Góc nội tiếp có đáp án

15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 27. Góc nội tiếp có đáp án

  • 31 lượt thi

  • 15 câu hỏi

  • 60 phút

Danh sách câu hỏi

Câu 1:

I. Nhận biết

Góc nội tiếp nhỏ hơn hoặc bằng \(90^\circ \) có số đo

Xem đáp án

Đáp án đúng là: A

Trong một đường tròn, góc nội tiếp nhỏ hơn hoặc bằng \(90^\circ \) có số đo bằng nửa số đo góc ở tâm cùng chắn một cung.


Câu 2:

Góc nội tiếp chắn nửa đường tròn có số đo bằng

Xem đáp án

Đáp án đúng là: B

Góc nội tiếp chắn nửa đường tròn có số đo bằng \(90^\circ \).


Câu 3:

Trong các hình dưới đây, hình biểu diễn góc nội tiếp là

Trong các hình dưới đây, hình biểu diễn góc nội tiếp là (ảnh 1)

Xem đáp án

Đáp án đúng là: B

Góc nội tiếp là góc có đỉnh nằm ở trên đường tròn, hai cạnh chứa hai dây cùng của đường tròn đó. Góc \(\widehat {BCA}\) trên Hình 2 có đỉnh là điểm \[C\] nằm trên đường tròn, hai cạnh \[AB,{\rm{ }}AC\] là hai dây cung của đường tròn nên là góc nội tiếp.


Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án

Đáp án đúng là: D

Trong một đường tròn, hai góc nội tiếp bằng nhau thì có thể cùng chắn một cung hoặc chắn hai cung bằng nhau.


Câu 5:

Cung nằm bên trong góc nội tiếp được gọi là

Xem đáp án

Đáp án đúng là: D

Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn.


Câu 6:

II. Thông hiểu

Cho đường tròn \[\left( O \right)\] và điểm \[I\] nằm ngoài \[\left( O \right)\]. Từ điểm \[I\] kẻ hai dây cung \[AB\] và \[CD\] \[(A\] nằm giữa \[I\] và \[B\], \[C\] nằm giữa \[I\] và \[D\]). Tích \[IA \cdot IB\] bằng

Xem đáp án

Đáp án đúng là: D

Cho đường tròn  ( O )  và điểm  I  nằm ngoài  ( O ) . Từ điểm  I  kẻ hai dây cung  A B  và  C D   ( A  nằm giữa  I  và  B ,  C  nằm giữa  I  và  D ). Tích  I A ⋅ I B  bằng (ảnh 1)

Xét \[\left( O \right)\] có \[\widehat {ACD}\] là góc nội tiếp chắn cung \[AD\] (chứa điểm \[B\]).

Xét \[\left( O \right)\] có \[\widehat {ABD}\] là góc nội tiếp chắn cung \[AD\] (chứa điểm \[C\]).

Nên \(\widehat {ACD} + \widehat {ADB} = \frac{1}{2} \cdot 360^\circ = 180^\circ \).

Lại có \(\widehat {ACD} + \widehat {ACI} = 180^\circ \) nên \(\widehat {ACI} = \widehat {IBD}\).

Tương tự ta có \(\widehat {IAC} = \widehat {IDB}\).

Xét \(\Delta IAC\) và \(\Delta IDB\) có \(\widehat {ACI} = \widehat {IBD}\); \(\widehat {IAC} = \widehat {IDB}\).

Do đó .

Do đó \(\frac{{IA}}{{ID}} = \frac{{IC}}{{IB}}\) hay \(IA \cdot IB = IC \cdot ID\).


Câu 7:

Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Số đo góc \(\widehat {ABM}\) là

Xem đáp án

Đáp án đúng là: A

Cho tam giác  A B C  có ba góc nhọn, đường cao  A H  và nội tiếp đường tròn tâm  ( O ) , đường kính  A M . Số đo góc  ˆ A B M  là (ảnh 1)

Xét \[\left( O \right)\] có \(\widehat {ABM}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABM}\; = 90^\circ \).


Câu 8:

Cho \[\left( O \right)\], đường kính \[AB\], điểm \[D\] thuộc đường tròn sao cho \[\widehat {DAB} = 50^\circ \]. Gọi \[E\] là điểm đối xứng với \[A\] qua \[D\]. Số đo góc \[AEB\] bằng

Xem đáp án

Đáp án đúng là: A

Cho  ( O ) , đường kính  A B , điểm  D  thuộc đường tròn sao cho  ˆ D A B = 50 ∘ . Gọi  E  là điểm đối xứng với  A  qua  D . Số đo góc  A E B  bằng (ảnh 1)

Xét \[\left( O \right)\] có \[\;\widehat {BDA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) nên \[BD \bot \;EA\] mà \[D\] là trung điểm \[EA.\]

Suy ra \[\Delta BEA\] có \[BD\] vừa là đường cao vừa là đường trung tuyến, do đó \[\Delta BAE\] cân tại \[B\].

Vậy \(\widehat {BEA} = \widehat {BAD} = 50^\circ \).


Câu 9:

Cho tam giác \[ABC\] nhọn có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng?

Xem đáp án

Đáp án đúng là:

Cho tam giác  A B C  nhọn có ba đỉnh nằm trên đường tròn  ( O ) . Hai đường cao  B D  và  C E  cắt nhau tại  H . Vẽ đường kính  A F . Khẳng định nào sau đây là đúng? (ảnh 1)

Xét \[\left( O \right)\] có \[\widehat {ACF} = 90^\circ \,;\,\,\widehat {ABF} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).

Suy ra \[CF \bot \;AC\]; \[BF \bot \;AB\] mà \[BD \bot \;AC\]; \[CE \bot \;AB\], do đó \[BD\,{\rm{//}}\,CF\]; \[CE\,{\rm{//}}\,BF\].

Suy ra \[BHCF\] là hình bình hành hay \[BH = CF\].


Câu 10:

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\]. Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Xem đáp án

Đáp án đúng là: B

Cho tam giác nhọn  A B C  có 3 đỉnh nằm trên đường tròn  ( O ) , đường kính  B D . Biết  ˆ B A C = 45 ∘ . Số đo của góc  ˆ C B D  là (ảnh 1)

Đường tròn \[\left( O \right)\] có \[\widehat {CDB}\] và \[\widehat {CAB}\] là hai góc nội tiếp cùng chắn cung \[CB\] nên \(\widehat {CDB} = \widehat {CAB} = 45^\circ \).

Do \[\widehat {DCB}\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).

Xét \(\Delta DCB\) có: \(\widehat {CBD} + \widehat {CDB} + \widehat {DCB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {CBD} = 180^\circ - \widehat {CDB} - \widehat {DCB} = 180^\circ - 45^\circ - 90^\circ = 45^\circ \).


Câu 11:

Cho tam giác \[ABC\] nhọn có \(\widehat {BAC} = 60^\circ \). Vẽ đường tròn đường kính \[BC\] tâm \[O\] cắt \[AB\], \[AC\] lần lượt tại \[D\] và \[E\]. Số đo góc \(\widehat {ODE}\) là

Xem đáp án

Đáp án đúng là: C

Cho tam giác  A B C  nhọn có  ˆ B A C = 60 ∘ . Vẽ đường tròn đường kính  B C  tâm  O  cắt  A B ,  A C  lần lượt tại  D  và  E . Số đo góc  ˆ O D E  là (ảnh 1)

Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].

Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).

Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:

\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).

Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.

Vậy \(\widehat {EDO} = 60^\circ \).


Câu 12:

Cho \[ABC\] nhọn có ba đỉnh nằm trên đường tròn \[\left( O \right)\] đường kính \(BD\). Vẽ tia \[Bx\] sao cho tia \(BC\) nằm giữa hai tia \(Bx,\,\,BD\) và \(\widehat {xBC} = \widehat {A\,}\). Số đo góc \(\widehat {OBx}\) là

Xem đáp án

Đáp án đúng là: D

Cho  A B C  nhọn có ba đỉnh nằm trên đường tròn  ( O )  đường kính  B D . Vẽ tia  B x  sao cho tia  B C  nằm giữa hai tia  B x , B D  và  ˆ x B C = ˆ A . Số đo góc  ˆ O B x  là (ảnh 1)

Ta có \(\widehat {DCB}\) là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).

Suy ra \(\widehat {BAC} + \widehat {CAD} = 90^\circ \).

Mà \(\widehat {xBC} = \widehat {BAC}\) (giả thiết) và \(\widehat {CBD} = \widehat {CAD}\) (hai góc nội tiếp cùng chắn cung \[CD\] của đường tròn tâm \(O)\).

Suy ra \(\widehat {xBC} + \widehat {CBD} = 90^\circ \) hay \(\widehat {DBx} = 90^\circ \).

Vậy \(\widehat {OBx} = 90^\circ \).


Câu 13:

III. Vận dụng

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án

Đáp án đúng là: D

Cho tam giác nhọn  A B C  có ba đỉnh nằm trên đường tròn  ( O ) . Hai đường cao  B D  và  C E  cắt nhau tại  H . Vẽ đường kính  A F  và gọi M  là trung điểm  B C . Cho các khẳng định sau: (ảnh 1)

⦁ Xét đường tròn \[\left( O \right)\] có \(\widehat {ABF} = 90^\circ \) và \(\widehat {ACF} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn).

Suy ra \[BF \bot \;AB\] và \[CF \bot \;AC\].

Mà \[CE \bot \;AB\] và \[BD \bot \;AC\] nên \[CE\,{\rm{//}}\,BF,\] \[BD\,{\rm{//}}\,CF\].

Suy ra \[BHCF\] là hình bình hành, do đó hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Lại có \[M\] là trung điểm của \[BC\] nên \[M\] cũng là trung điểm của \[HF\] hay \(HM = \frac{{HF}}{2}\).

⦁ Xét \(\Delta AHF\) có \(O,\,\,M\) lần lượt là trung điểm của \(AF,\,\,HF\) nên \[OM\] là đường trung bình của tam giác \[AHF\], do đó \[AH\,{\rm{//}}\,OM\].

⦁ Xét tam giác \[ABC\] có \[BD\] và \[CE\] là hai đường cao cắt nhau tại \[H\] nên \[H\] là trực tâm tam giác \[ABC\]. Suy ra  \[AH \bot \;BC\] mà \[AH\,{\rm{//}}\,OM\], do đó \[OM \bot \;BC\].

Vậy cả ba khẳng định đã cho đều đúng, ta chọn phương án D.


Câu 14:

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Xem đáp án

Đáp án đúng là: D

Cho tam giác  A B C  có ba đỉnh nằm trên đường tròn  ( O ; R ) , đường cao  A H , biết  A B = 12 c m ,  A C = 15 c m ,  A H = 6 c m . Đường kính của đường tròn  ( O )  bằng (ảnh 1)

Kẻ đường kính \[AD\] của đường tròn \(\left( O \right)\).

Xét đường tròn \[\left( O \right)\] có 

\(\widehat {ACB} = \widehat {ADB}\)  (hai góc nội tiếp cùng chắn cung \[AB\])

\(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Xét \[\Delta ACH\] và \[\Delta ADB\] có: \(\widehat {AHC} = \widehat {ABD} = 90^\circ ,\) \(\widehat {ACH} = \widehat {ADB}\)

Do đó (g.g).

Suy ra \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) nên \(AD = \frac{{AB \cdot AC}}{{AH}} = \frac{{12 \cdot 15}}{6} = 30\,\,({\rm{cm}}).\)

Vậy đường kính của đường tròn là 30 cm.


Câu 15:

Tam giác \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\] có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 3\,\,{\rm{cm}}\]. Vẽ đường cao \[AH\] và đường kính \[AD\]. Khi đó tích \[AH.{\rm{ }}AD\] bằng

Xem đáp án

Đáp án đúng là: A

Tam giác  A B C  có 3 đỉnh nằm trên đường tròn  ( O )  có  A B = 5 c m ;  A C = 3 c m . Vẽ đường cao  A H  và đường kính  A D . Khi đó tích  A H . A D  bằng (ảnh 1)

Xét \[\left( O \right)\] có \(\widehat {ACB} = \widehat {ADB}\) (hai góc nội tiếp cùng chắn cung \[AB\]); \[\;\widehat {ADB} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).

Nên ∆\[ACH\]ᔕ ∆\[ADB\] (g.g), do đó \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) hay \[AH.{\rm{ }}AD = AC.{\rm{ }}AB\].

Suy ra \[AH.{\rm{ }}AD = 3.5 = 15\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right).\]

Vậy \[AH.{\rm{ }}AD = 3 \cdot 5 = 15\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right).\]


Bắt đầu thi ngay