Dạng 6. Bài luyện tập dạng nâng cao tổng hợp talet và liên quan có đáp án
-
1399 lượt thi
-
7 câu hỏi
-
45 phút
Danh sách câu hỏi
Câu 1:
Cho tam giác ABC có , AD là đường phân giác. Chứng minh rằng:
Kẻ DE // AB, ta có:
nên tam giác ADE đều. Suy ra AD = AE = DE.
Áp dụng hệ quả định lý Ta-lét: hay
Mặt khác nên
Suy ra
Nhận xét. Những bài toán chứng minh đẳng thức có nghịch đảo độ dài đoạn thẳng, bạn nên biến đổi và chứng minh hệ thức tương đương có tỉ số của hai đoạn thẳng.
Câu 2:
Một đường thẳng đi qua trọng tâm G của tam giác ABC cắt cạnh AB, AC lần lượt tại M và N. Chứng minh rằng:
* Tìm cách giải. Để tạo ra tỉ số chúng ta cần vận dụng định lý Ta-let, mà hình vẽ chưa có yếu tố song song do vậy chúng ta cần kẻ thêm yếu tố song song. Kẻ đường thẳng song song với MN từ B và C vừa khai thác được yếu tố trọng tâm, vừa tạo ra được tỉ số yêu cầu.
* Trình bày lời giải
Trường hợp 1. Nếu MN // BC, thì lời giải giản đơn (dành cho bạn đọc).
Trường hợp 2. Xét MN không song song với BC.
Gọi giao điểm của AG và BC là D
Kẻ BI // CK // MN
Xét và có nên
Áp dụng định lý Ta-lét, ta có (vì MG // BI);
(vì GN // CK).
Suy ra (1) (vì ).
Câu 3:
Một đường thẳng đi qua trọng tâm G của tam giác ABC cắt cạnh AB, AC lần lượt tại M và N. Chứng minh rằng:
* Tìm cách giải. Để tạo ra tỉ số chúng ta cần vận dụng định lý Ta-let, mà hình vẽ chưa có yếu tố song song do vậy chúng ta cần kẻ thêm yếu tố song song. Kẻ đường thẳng song song với MN từ B và C vừa khai thác được yếu tố trọng tâm, vừa tạo ra được tỉ số yêu cầu.
* Trình bày lời giải
Trường hợp 1. Nếu MN // BC, thì lời giải giản đơn (dành cho bạn đọc).
Trường hợp 2. Xét MN không song song với BC.
Xét
hay suy ra
Nhận xét. Từ kết quả (1), chúng ta thấy rằng bởi G là trọng tâm nên . Vậy nếu G không phải là trọng tâm thì ta có bài toán sau:
- Một đường bất kỳ cắt cạnh AB, AC và đường trung tuyến AD của tam giác ABC lần lượt tại M, N và G. Chứng minh rằng:
- Nếu thay yếu tố trung tuyến bằng hình bình hành, ta có bài toán sau: Cho hình bình hành ABCD. Một đường thẳng bất kỳ cắt AB, AD và AC lần lượt tại M, N và G. Chứng minh rằng:
Câu 4:
Cho ABCD là hình bình hành có tâm O. Gọi M, N là trung điểm BO; AO. Lấy F trên cạnh AB sao cho FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. Chứng minh rằng:
* Tìm cách giải.
Với phân tích và suy luận như câu a, ví dụ 4 thì câu a, ví dụ này không quá khó.
Tương tự câu a, chúng ta có kết quả: và suy ra để liên kết được BE + AK với nhau, mà với suy luận trên thì BE, AK cùng nằm ở mẫu số, do đó chúng ta liên tưởng tới bất đẳng thức đại số sẽ cho chúng ta yêu cầu. Với suy luận đó, chúng ta có lời giải sau:
* Trình bày lời giải
Kẻ CI //AH // EF (với )
Xét và có (đối đỉnh); OA = OB; (so le trong)
(c.g.c) . Áp dụng định lý Ta-lét, ta có:
Câu 5:
Cho ABCD là hình bình hành có tâm O. Gọi M, N là trung điểm BO; AO. Lấy F trên cạnh AB sao cho FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. Chứng minh rằng:
* Tìm cách giải.
Với phân tích và suy luận như câu a, ví dụ 4 thì câu a, ví dụ này không quá khó.
Tương tự câu a, chúng ta có kết quả: và suy ra để liên kết được BE + AK với nhau, mà với suy luận trên thì BE, AK cùng nằm ở mẫu số, do đó chúng ta liên tưởng tới bất đẳng thức đại số sẽ cho chúng ta yêu cầu. Với suy luận đó, chúng ta có lời giải sau:
* Trình bày lời giải
Tương tự ta có:
(1)
Áp dụng bất đẳng thức (với )
Ta có: (2)
Từ (1) và (2) suy ra:
Mà
Câu 6:
Cho tam giác ABC nhọn có AH là đường cao. Trên AH, AB, AC lần lượt lấy điểm D, E, F sao cho . Chứng minh rằng: .
* Tìm cách giải. Để chứng minh , suy luận một cách tự nhiên chúng ta cần vận dụng định lý Ta-let đảo. Do vậy cần chứng minh tỉ lệ thức . Nhận thấy để định hướng tỉ lệ thức ấy cũng như khai thác được chúng ta cần kẻ , để có các đường thẳng song song rồi vận dụng định lý Ta-let. Từ đó chúng ta có lời giải sau:
* Trình bày lời giải.
Kẻ , BO và CM cắt nhau tại I D là trực tâm của
I, D, A thẳng hàng.
suy ra
(Định lý Ta-let đảo).
Câu 7:
Qua D kẻ đường thẳng song song với AB, cắt tia AI tại P. Áp dụng định lý Ta-let, cho các đoạn thẳng song song ta có:
(1).
(2).
và (3).
Từ (1), (2) và (3) suy ra:
. Vậy