Đề kiểm tra Giữa kì 1 Toán 11 Cánh Diều có đáp án - Đề 02
-
171 lượt thi
-
38 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
Một cung tròn có độ dài bằng bán kính. Khi đó số đo bằng radian của cung tròn đó là
Chọn A
Câu 2:
Trong mặt phẳng tọa độ \(Oxy,\)cho đường tròn lượng giác như hình vẽ bên dưới.
Hỏi góc lượng giác nào sau đây có số đo là \( - 90^\circ \)?
Chọn C
Câu 4:
Đơn giản biểu thức \(A = \cos \left( {\frac{{9\pi }}{2} - \alpha } \right) + \sin \left( {\alpha - \pi } \right)\) ta được
Chọn D
Câu 5:
Cho góc \(\alpha \) thỏa mãn \({\rm{tan}}\alpha + {\rm{cot}}\alpha = 2\). Giá trị của biểu thức \(P = {\rm{ta}}{{\rm{n}}^2}\alpha + {\rm{co}}{{\rm{t}}^2}\alpha \) là
Chọn B
Câu 7:
Hàm số \(y = f\left( x \right)\) (có tập xác định \(D\)) là hàm số lẻ nếu với \(\forall x \in D\) thì \( - x \in D\) và
Chọn B
Câu 9:
Trong các hàm số \(y = \sin x\), \(y = \cos x\), \(y = \tan x\), \(y = \cot x\), có bao nhiêu hàm số đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?
Chọn C
Câu 10:
Tập xác định \(D\) của hàm số \(y = \sqrt {1 - {\rm{sin}}2x} - \sqrt {1 + {\rm{sin}}2x} \) là
Chọn B
Câu 14:
Số nghiệm thuộc đoạn \(\left[ {\pi ;2\pi } \right]\) của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\) là
Chọn A
Câu 16:
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn \[10\] theo thứ tự tăng dần?
Chọn C
Câu 17:
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {2^n}.\) Số hạng \({u_{n + 1}}\) là
Chọn A
Câu 19:
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và \({u_2} = 8\). Công sai của cấp số cộng đã cho bằng
Chọn C
Câu 20:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = - 5\) và \(d = 3.\) Mệnh đề nào sau đây đúng?
Chọn C
Câu 21:
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Chọn C
Câu 22:
Cho bốn điểm \(A,\,B,\,C,\,D\) không cùng nằm trong một mặt phẳng. Trên \(AB,\,AD\) lần lượt lấy các điểm \(M\) và \(N\) sao cho \(MN\) cắt \(BD\) tại \(I\). Điểm \(I\) không thuộc mặt phẳng nào sao đây?
Chọn D
Câu 23:
Cho bốn điểm \[A,\,B,\,C,\,D\] không đồng phẳng. Giao tuyến của hai mặt phẳng \[\left( {ABC} \right)\] và \[\left( {ACD} \right)\] là
Chọn B
Câu 26:
Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AD,BC\), điểm \(G\) là trọng tâm của tam giác \(BCD\). Giao điểm của đường thẳng \(MG\) với mặt phẳng \(\left( {ABC} \right)\) là
Chọn C
Câu 27:
Cho tứ diện \[ABCD.\] Gọi \[E\] và \[F\] lần lượt là trung điểm của \[AB\] và \[CD\]; \[G\] là trọng tâm tam giác \[BCD.\] Giao điểm của đường thẳng \[EG\] và mặt phẳng \[\left( {ACD} \right)\] là
Chọn B
Câu 28:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Hỏi cạnh \[CD\] chéo với tất cả các cạnh nào của hình chóp?
Chọn B
Câu 29:
Trong không gian cho các mệnh đề sau:
(I) Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì song song với nhau.
(II) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó.
(III) Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau.
(IV) Qua điểm \(A\) không thuộc đường thẳng \[d\], kẻ được đúng một đường thẳng song song với \[d\].
Số mệnh đề đúng là
Chọn B
Câu 30:
Trong không gian, cho ba đường thẳng \(a,\,\,b,\,\,c\). Trong các mệnh đề sau mệnh đề nào đúng?
Chọn B
Câu 31:
Cho hình chóp \[S.ABCD\]. Gọi \[I,J\] lần lượt là trung điểm của \[AB\] và \[BC\]. Giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SIJ} \right)\] là một đường thẳng song song với
Chọn C
Câu 32:
Cho đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) trong không gian. Có bao nhiêu vị trí tương đối của \(a\) và \(\left( P \right)\)?
Chọn C
Câu 33:
Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d \not\subset \left( \alpha \right)\]. Khẳng định nào sau đây là sai?
Chọn B
Câu 34:
Cho tứ diện \(ABCD\), gọi \({G_1},{G_2}\) lần lượt là trọng tâm tam giác \(BCD\) và \(ACD.\) Mệnh đề nào sau đây sai?
Chọn D
Câu 35:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\), gọi \(I\) là trung điểm cạnh \(SC\). Mệnh đề nào sau đây sai?
Chọn D
Câu 36:
Giải các phương trình lượng giác:
a) \(\sin \left( {2x + \frac{\pi }{4}} \right) + \cos x = 0\);
b) \(\frac{1}{{{{\sin }^2}x}} - \left( {\sqrt 3 - 1} \right)\cot x - \left( {\sqrt 3 + 1} \right) = 0\) và \(x \in \left( {0;\pi } \right)\).
a) \(x = - \frac{{3\pi }}{4} + k2\pi ;x = \frac{{5\pi }}{{12}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right)\).
b) \(x \in \left\{ {\frac{{3\pi }}{4};\frac{\pi }{6}} \right\}\).
Câu 37:
Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AB\). Gọi \(\left( \alpha \right)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(BC\) và \(AD\). Gọi \(N,P,Q\) lần lượt là giao điểm của mặt phẳng \(\left( \alpha \right)\) với các cạnh \(AC,CD\) và \(DB\).
a) Chứng minh \(MNPQ\) là hình bình hành.
b) Trong trường hợp nào thì \(MNPQ\) là hình thoi?
a) HS tự chứng minh.
b) \(MN = \frac{{AD.BC}}{{AD + BC}}\).
Câu 38:
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ \(t\) của năm 2023 (có 365 ngày) được cho bởi một hàm số \(y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10\), với \(t \in \mathbb{Z}\) và \[0 < t \le 365\]. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Ngày 29 tháng 5 năm 2023 là ngày thành phố A có nhiều giờ có ánh sáng mặt trời nhất.