Chủ nhật, 22/12/2024
IMG-LOGO
Trang chủ Lớp 11 Toán Đề kiểm tra Giữa kì 1 Toán 11 Cánh Diều có đáp án

Đề kiểm tra Giữa kì 1 Toán 11 Cánh Diều có đáp án

Đề kiểm tra Giữa kì 1 Toán 11 Cánh Diều có đáp án - Đề 02

  • 159 lượt thi

  • 38 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 3:

Một góc lượng giác \(\alpha \) có điểm cuối ở góc phần tư thứ II thì


Câu 4:

Đơn giản biểu thức \(A = \cos \left( {\frac{{9\pi }}{2} - \alpha } \right) + \sin \left( {\alpha - \pi } \right)\) ta được


Câu 6:

Khẳng định nào sau đây đúng?


Câu 7:

Hàm số \(y = f\left( x \right)\) (có tập xác định \(D\)) là hàm số lẻ nếu với \(\forall x \in D\) thì \( - x \in D\)


Câu 8:

Hàm số \(y = \sin x\) là hàm số tuần hoàn với chu kì

Câu 10:

Tập xác định \(D\) của hàm số \(y = \sqrt {1 - {\rm{sin}}2x} - \sqrt {1 + {\rm{sin}}2x} \)


Câu 11:

Tập giá trị \(T\) của hàm số \[y = 5 - 3\sin x\]


Câu 12:

Tất cả nghiệm của phương trình \(\tan x = \tan \frac{\pi }{{11}}\)


Câu 13:

Phương trình \(\cos x = 0\) có nghiệm là


Câu 15:

Phương trình \(\cot 3x = - \frac{{\sqrt 3 }}{3}\) có nghiệm


Câu 17:

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {2^n}.\) Số hạng \({u_{n + 1}}\)


Câu 18:

Trong các dãy số sau, dãy số nào không bị chặn?


Câu 25:

Khẳng định nào sau đây là đúng?


Câu 27:

Cho tứ diện \[ABCD.\] Gọi \[E\]\[F\] lần lượt là trung điểm của \[AB\]\[CD\]; \[G\] là trọng tâm tam giác \[BCD.\] Giao điểm của đường thẳng \[EG\] và mặt phẳng \[\left( {ACD} \right)\]


Câu 30:

Trong không gian, cho ba đường thẳng \(a,\,\,b,\,\,c\). Trong các mệnh đề sau mệnh đề nào đúng?


Câu 33:

Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d \not\subset \left( \alpha \right)\]. Khẳng định nào sau đây là sai?


Câu 34:

Cho tứ diện \(ABCD\), gọi \({G_1},{G_2}\) lần lượt là trọng tâm tam giác \(BCD\)\(ACD.\) Mệnh đề nào sau đây sai?


Câu 35:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\), gọi \(I\) là trung điểm cạnh \(SC\). Mệnh đề nào sau đây sai?


Câu 36:

Giải các phương trình lượng giác:

a) \(\sin \left( {2x + \frac{\pi }{4}} \right) + \cos x = 0\);

b) \(\frac{1}{{{{\sin }^2}x}} - \left( {\sqrt 3 - 1} \right)\cot x - \left( {\sqrt 3 + 1} \right) = 0\)\(x \in \left( {0;\pi } \right)\).

Xem đáp án

a) \(x = - \frac{{3\pi }}{4} + k2\pi ;x = \frac{{5\pi }}{{12}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right)\).

b) \(x \in \left\{ {\frac{{3\pi }}{4};\frac{\pi }{6}} \right\}\).


Bắt đầu thi ngay