Thứ bảy, 21/12/2024
IMG-LOGO
Trang chủ Lớp 7 Toán Đề kiểm tra học kì 2 Toán 7 có đáp án ( Mới nhất)

Đề kiểm tra học kì 2 Toán 7 có đáp án ( Mới nhất)

Đề kiểm tra học kì 2 Toán 7 có đáp án ( Mới nhất)_ đề số 5

  • 1484 lượt thi

  • 5 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Thời gian giải một bài toán của 30 học sinh được ghi lại trong bảng sau:

Giá trị (x)

5

7

9

10

12

15

 

Tần số (n)

3

4

7

9

5

2

N = 30

a) Dấu hiệu ở đây là gì? Tính số trung bình cộng của dấu hiệu.

b) Tìm mốt của dấu hiệu.

Xem đáp án

a) Dấu hiệu là thời gian giải một bài toán của 30 học sinh.

Trung bình cộng của dấu hiệu là:

5.3+7.4+9.7+10.9+12.5+15.230=28630 = 9,5(3) 9,5.

b) Mốt của dấu hiệu là 10.


Câu 2:

Cho đơn thức A = (23x3y3z)(-6xy3z).

a) Thu gọn, xác định hệ số và bậc của đơn thức A.

b) Tính giá trị của đơn thức A biết x = -1; y = 1; z = 12.

Xem đáp án

a) A = (23x3y3z)(-6xy3z)

A = (23.6).(x3.x).(y3.y3).(z.z)

A = (23.6).(x3.x).(y3.y3).(z.z)

A = 4x4y6z2

Hệ số của đơn thức A: 4.

Bậc của đơn thức A: 4 + 6 + 2 = 12.

b) Với x = -1; y = 1; z = 12 thì A = 4.(-1)4.16. (12)2 = 4.1.1.14 = 1.

Vậy A = 1 với x = -1; y = 1; z = 12.


Câu 3:

Cho hai biểu thức

f(x) = -2x4 - 3x3 + 4x4 - x2 + 5x + 3x2 + 5x3 + 6; g(x) = x4 - x3 + x2 - 5x - x3 - 2x2 + 3.

a) Thu gọn và sắp xếp đa thức f(x) và g(x) theo lũy thừa giảm dần của biến; cho biết bậc; hệ số cao nhất; hệ số tự do của mỗi đa thức.

b) Tìm các đa thức h(x) và k(x), biết:

h(x) = f(x) + g(x); k(x) = f(x) - 2g(x) - 4x2.

Xem đáp án

a) f(x) = -2x4 - 3x3 + 4x4 - x2 + 5x + 3x2 + 5x3 + 6

f(x) = (-2x4 + 4x4) + (- 3x3 + 5x3) + (- x2 + 3x2) + 5x + 6

f(x) = 2x4 + 2x3 + 2x2 + 5x + 6

Bậc của đa thức f(x): 4.

Hệ số cao nhất của đa thức f(x): 2.

Hệ số tự do của đa thức f(x): 6.

g(x) = x4 - x3 + x2 - 5x - x3 - 2x2 + 3

g(x) = x4 + (- x3 - x3) + (x2 - 2x2) - 5x + 3

g(x) = x4 - 2x3 - x2 - 5x + 3

Bậc của đa thức g(x): 4.

Hệ số cao nhất của đa thức g(x): 1.

Hệ số tự do của đa thức g(x): 3.

b) h(x) = f(x) + g(x)

h(x) = 2x4 + 2x3 + 2x2 + 5x + 6 + x4 - 2x3 - x2 - 5x + 3

h(x) = (2x4 + x4) + (2x3 - 2x3) + (2x2 - x2) + (5x - 5x) + (6 + 3)

h(x) = 3x4 + x2 + 9

k(x) = f(x) - 2g(x) - 4x2

k(x) = 2x4 + 2x3 + 2x2 + 5x + 6 - 2(x4 - 2x3 - x2 - 5x + 3) - 4x2

k(x) = 2x4 + 2x3 + 2x2 + 5x + 6 - 2x4 + 4x3 + 2x2 + 10x - 6 - 4x2

k(x) = (2x4 - 2x4) + (2x3 + 4x3) + (2x2 + 2x2 - 4x2) + (5x + 10x) + (6 - 6)

k(x) = 6x3 + 15x


Câu 4:

Cho tam giác ABC vuông tại A, AC > AB. Đường trung trực của AB cắt BC tại I.

a) Chứng minh rằng ΔAIB,ΔAIC là các tam giác cân.

b) Từ I kẻ đường thẳng d vuông góc với BC, cắt tia BA và AC tại M và N; tia BN cắt CM tại E. Chứng minh rằng EBMC.

c) Chứng minh rằng các đường thẳng EA và BC song song với nhau.

Xem đáp án

Cho tam giác ABC vuông tại A, AC > AB. Đường trung trực của AB cắt BC tại I. a) Chứng minh rằng  Tam giác AIB, tam giác AIC là các tam giác cân. b) Từ I kẻ đường thẳng d vuông góc với BC, cắt tia BA và AC tại M và N; tia BN cắt CM tại E. Chứng minh rằng EB vuông góc với MC  c) Chứng minh rằng các đường thẳng EA và BC song song với nhau. (ảnh 1)

a) Do I nằm trên đường trung trực của AB nên AI = BI.

ΔAIB có AI = BI nên ΔAIB cân tại I.

Do đó IAB^=IBA^.

Lại có: IAB^+IAC^=90°; IBA^+ICA^=90° nên IAC^=ICA^.

ΔAIC IAC^=ICA^ nên ΔAIC cân tại I.

b) Xét ΔMBC CAMB; MIBC.

Mà CA cắt MI tại N nên N là trực tâm của ΔMBC.

Do đó BNMC hay BEMC.

c) ΔMBCcó MI vừa là đường trung tuyến, vừa là đường cao nên ΔMBC cân tại M.

Khi đó MI là đường phân giác của BMC^.

AMN^=EMN^.

Xét ΔAMN vuông tại A và ΔEMN vuông tại E có:

MN chung.

ΔAMN=ΔEMN (chứng minh trên).

ΔAMN=ΔEMN (cạnh huyền - góc nhọn).

 MA = ME (2 cạnh tương ứng).

ΔMAE có MA = ME nên ΔMAE cân tại M.

Do đó MAE^=MEA^.

Xét ΔMAE MAE^+MEA^+AME^=180°

2MAE^+AME^=180°

MAE^=180°AME^2 (1).

Do ΔMBC cân tại M nên MBC^=MCB^.

Xét ΔMBC MBC^+MCB^+BMC^=180°

2MBC^+BMC^=180°

MBC^=180°BMC^2 (2).

Từ (1) và (2) suy ra MAE^=MBC^.

Mà hai góc này ở vị trí đồng vị nên EA // BC.

Vậy hai đường thẳng EA và BC song song với nhau.


Câu 5:

Tính giá trị của biểu thức T = x3 - 2x2 - xy2 + 2xy + 10x + 10y

biết x + y = 2.

Xem đáp án

T = x3 - 2x2 - xy2 + 2xy + 10x + 10y

T = x2(x - 2) - xy(y - 2) + 10(x + y)

T = x2.(-y) - xy.(-x) + 10.2

T = -x2y + x2y + 20

T = 20.

Vậy T = 20.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương