Trắc nghiệm Toán 12 Cánh diều Bài 1. Phương trình mặt phẳng có đáp án
-
32 lượt thi
-
20 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Đáp án đúng là: C
Ta có: \[ABCD.A'B'C'D'\] là hình lập phương nên \[\overrightarrow {AA'} \bot \left( {ABCD} \right)\].
Do đó, \[\overrightarrow {AA'} \] là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\].
Câu 2:
Phương trình nào dưới đây là phương trình tổng quát của mặt phẳng?
Đáp án đúng là: D
Phương trình tổng quát của mặt phẳng có dạng: \[ax + by + cz + d = 0\] trong đó \[a,b,c\] không đồng thời bằng 0.
Do đó, ta chọn D.
Câu 3:
Trong không gian \[Oxyz\], mặt phẳng \[\left( P \right):x + y + z - 3 = 0\] đi qua điểm nào dưới đây?
Đáp án đúng là: B
Thay tọa độ vào phương trình mặt phẳng, ta có:
Với điểm \[A\left( { - 1; - 1; - 1} \right),\] ta được: \[ - 1 + \left( { - 1} \right) + \left( { - 1} \right) - 3 = - 6 \ne 0.\]
Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[A\left( { - 1; - 1; - 1} \right).\]
Với điểm \[B\left( {1;1;1} \right)\], ta được: \[1 + 1 + 1 - 3 = 0\].
Do đó, mặt phẳng \[\left( P \right)\] đi qua điểm \[B\left( {1;1;1} \right).\]
Với điểm \[C\left( {1;1; - 1} \right),\] ta được: \[1 + 1 + \left( { - 1} \right) - 3 = - 2 \ne 0.\]
Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[C\left( {1;1; - 1} \right).\]
Với điểm \[D\left( { - 3;0;0} \right)\], ta được: \[ - 3 + 0 + 0 - 3 = - 6 \ne 0.\]
Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[D\left( { - 3;0;0} \right).\]
Câu 4:
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( \alpha \right):2x + y + z + 1 = 0\]. Vectơ pháp tuyến của mặt phẳng là
Đáp án đúng là: A
Vectơ pháp tuyến của mặt phẳng \[\left( \alpha \right):2x + y + z + 1 = 0\] là \[\overrightarrow n = \left( {2;1;1} \right).\]
Câu 5:
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\]. Điểm nào sau đây không thuộc mặt phẳng \[\left( P \right)\]?
Đáp án đúng là: C
Xét các đáp án, ta thấy điểm \[M\left( {1;2;3} \right)\] không thuộc mặt phẳng \[\left( P \right)\] do
\[\frac{1}{1} + \frac{2}{2} + \frac{3}{3} = 3 \ne 1.\]
Câu 6:
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Đáp án đúng là: A
Ta có: \[2\left( {x - 1} \right) + 3\left( {y - 1} \right) + \left( { - 1} \right)\left( {z - 3} \right) = 0\] hay \[2x + 3y - z - 2 = 0.\]
Câu 7:
Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
Đáp án đúng là: C
Ta có vectơ pháp tuyến \[\overrightarrow n \] của mặt phẳng \[\left( P \right)\] bằng
\[\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 2}\\0&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 1}&0\end{array}} \right|} \right) = \left( {2;1; - 2} \right).\]
Vậy vectơ pháp tuyến của mặt phẳng là \[\overrightarrow n = \left( {2;1; - 2} \right).\]
Câu 8:
Trong không gian \[Oxyz\], cho điểm \[A\left( {3; - 2; - 2} \right)\], \[B\left( {3;2;0} \right)\], \[C\left( {0;2;1} \right)\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là
Đáp án đúng là: C
Ta có: \[\overrightarrow {AB} = \left( {0;4;2} \right)\], \[\overrightarrow {AC} = \left( { - 3;4;3} \right)\].
Vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\] là
\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\3&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\{ - 3}&4\end{array}} \right|} \right)\]\[ = \left( {4; - 6;12} \right) = 2\left( {2; - 3;6} \right).\]
Suy ra \[\overrightarrow n = \left( {2; - 3;6} \right)\] là một vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\].
Vậy phương trình mặt phẳng \[\left( {ABC} \right)\] là:
\[2\left( {x - 3} \right) + \left( { - 3} \right)\left( {y - 2} \right) + 6\left( {z - 0} \right) = 0\] hay \[2x - 3y + 6z = 0.\]
Câu 9:
Trong không gian \[Oxyz\], cho điểm \[M\left( {1;2;3} \right)\]. Gọi \[A,B,C\] lần lượt là hình chiếu vuông góc của điểm \[M\] lên các trục \[Ox,Oy,Oz\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là
Đáp án đúng là: A
Theo đề, ta có: \[A,B,C\] lần lượt là hình chiếu vuông góc của điểm \[M\] lên các trục \[Ox,Oy,Oz\] nên \[A\left( {1;0;0} \right),B\left( {0;2;0} \right),C\left( {0;0;3} \right)\].
Lúc này có phương trình mặt phẳng \[\left( {ABC} \right)\] là: \[\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1.\]
Câu 10:
Trong không gian \[Oxyz\], cho điểm \[M\left( { - 1;2;0} \right)\] và mặt phẳng \[\left( P \right)\]: \[2x - 2y + z + 1 = 0\]. Khoảng cách từ điểm \[M\] đến mặt phẳng \[\left( P \right)\] là
Đáp án đúng là: B
Khoảng cách từ điểm \[M\] đến mặt phẳng \[\left( P \right)\] là
\[d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2.2 + 0 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} = \frac{7}{3}.\]
Câu 11:
Trong không gian \[Oxyz\], cho \[A\left( {0;1;1} \right)\], \[B\left( {1;2;3} \right)\]. Viết phương trình mặt phẳng \[\left( P \right)\] đi qua \[A\] và vuông góc với đường thẳng \[AB\].
Đáp án đúng là: A
Ta có: \[\overrightarrow {AB} = \left( {1;1;2} \right)\] là vectơ pháp tuyến của \[\left( P \right)\] do \[\left( P \right)\] vuông góc với đường thẳng \[AB\].
Suy ra phương trình mặt phẳng \[\left( P \right)\] là:
\[1.\left( {x - 0} \right) + 1\left( {y - 1} \right) + 2\left( {z - 1} \right) = 0\] hay \[x + y + 2z - 3 = 0.\]
Câu 12:
Cho hai mặt phẳng \[\left( P \right):3x - 2y + 2z + 7 = 0\] và \[\left( Q \right):5x - 4y + 3z + 1 = 0\]. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả \[\left( P \right)\] và \[\left( Q \right)\] là
Đáp án đúng là: B
Ta có: \[\overrightarrow {{n_P}} = \left( {3; - 2;2} \right),\overrightarrow {{n_Q}} = \left( {5; - 4;3} \right)\].
Do mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả \[\left( P \right)\] và \[\left( Q \right)\] nên có vectơ pháp tuyến là
\[\overrightarrow n = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 4}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\3&5\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 2}\\5&{ - 4}\end{array}} \right|} \right) = \left( {2;1; - 2} \right).\]
Suy ra phương trình mặt phẳng là \[2x + y - 2z = 0.\]
Câu 13:
Trong không gian \[Oxyz\], mặt phẳng đi qua điểm \[M\left( {1;3; - 2} \right)\] và song song với mặt phẳng \[\left( P \right):2x - y + 3z + 4 = 0\] là
Đáp án đúng là: C
Do mặt phẳng song song với \[\left( P \right)\] nên có vectơ pháp tuyến là \[\overrightarrow n = \left( {2; - 1;3} \right).\]
Do đó, phương trình mặt phẳng thỏa mãn là
\[2\left( {x - 1} \right) + \left( { - 1} \right)\left( {y - 3} \right) + 3\left( {z + 2} \right) = 0\] hay \[2x - y + 3z + 7 = 0.\]
Câu 14:
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y + 2z - 4 = 0\]. Gọi \[H\] là hình chiếu vuông góc của \[M\left( {3;1; - 2} \right)\] lên mặt phẳng \[\left( P \right)\]. Độ dài đoạn thẳng \[MH\] là
Đáp án đúng là: C
Ta có: \[MH = d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.3 - 1 + 2.\left( { - 2} \right) - 4} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 1.\]
Câu 15:
Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 3z - 1 = 0\] và \[\left( Q \right):x + 2y + 3z + 6 = 0\] là
Đáp án đúng là: A
Nhận thấy \[\overrightarrow {{n_P}} = \overrightarrow {{n_Q}} = \left( {1;2;3} \right)\] nên \[\left( P \right)\parallel \left( Q \right)\].
Do đó, khoảng cách giữa hai mặt phẳng \[\left( P \right),\left( Q \right)\] là \[\frac{{\left| { - 1 - 6} \right|}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} = \frac{7}{{\sqrt {14} }}.\]
Câu 16:
III. Vận dụng
Trong không gian với hệ tọa độ \[Oxyz\], cho hai mặt phẳng \[\left( P \right):2x + my + 3z - 5 = 0\] và \[\left( Q \right):nx - 8y - 6z + 2 = 0\] với \[m,n \in \mathbb{R}\]. Xác định \[m,n\] để \[\left( P \right)\] song song với \[\left( Q \right)\].
Đáp án đúng là: B
Mặt phẳng \[\left( P \right)\] có vectơ pháp tuyến \[\overrightarrow {{n_P}} = \left( {2;m;3} \right).\]
Mặt phẳng \[\left( Q \right)\] có vectơ phép tuyến \[\overrightarrow {{n_Q}} = \left( {n; - 8; - 6} \right).\]
Để \[\left( P \right)\] song song với \[\left( Q \right)\] thì \[\overrightarrow {{n_P}} = k\overrightarrow {{n_Q}} {\rm{ }}\left( {k \in \mathbb{R}} \right) \Leftrightarrow \left\{ \begin{array}{l}2 = kn\\m = - 8k\\3 = - 6k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = - \frac{1}{2}\\m = 4\\n = - 4.\end{array} \right.\]
Câu 17:
Cho hai mặt phẳng \[\left( P \right):2x - y + 2z - 5 = 0\]; \[\left( Q \right):4x - 2y + 4z + 1 - m = 0\] và điểm \[M\left( {2;1;5} \right)\]. Khi đó:
a) Khoảng cách từ \[M\] đến mặt phẳng \[\left( P \right)\] bằng \[\frac{8}{3}.\]
b) Với \[m = 0\] thì khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng \[\frac{9}{2}.\]
c) Với \[m = 3\] thì khoảng cách giữa mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng \[3.\]
d) Có hai giá trị của \[m\] để khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng 1. Khi đó tổng của tất cả các giá trị \[m\] bằng 5.
Số mệnh đề đúng trong các mệnh đề trên là:
Đáp án đúng là: C
a) Ta có: \[d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.2 - 1 + 2.5 - 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{8}{3}.\]
Vậy ý a đúng.
b) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]
Với \[m = 0\] thì \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {27 - 0} \right|}}{6} = \frac{9}{2}.\]
Vậy ý b đúng.
c) Với \[m = 3\] thì \[\left( Q \right):4x - 2y + 4z - 2 = 0\].
Nhận thấy \[\frac{2}{4} = \frac{{ - 1}}{{ - 2}} = \frac{2}{4} \ne \frac{{ - 5}}{{ - 2}}\] do đó \[\left( P \right)\parallel \left( Q \right)\].
Có \[\left( Q \right):4x - 2y + 4z - 2 = 0\]\[ \Leftrightarrow 2x - y + 2z - 1 = 0\]
Suy ra \[d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 5 - \left( { - 1} \right)} \right|}}{3} = 2.\]
Vậy ý c sai.
d) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]
Để \[d\left( {M,\left( Q \right)} \right) = 1\] thì \[\frac{{\left| {27 - m} \right|}}{6} = 1\].
\[\left| {27 - m} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}m = 21\\m = 33\end{array} \right.\].
Vậy có 2 giá trị \[m\] để khoảng cách từ \[M\] đến \[\left( Q \right)\] bằng 1. Và tổng của hai giá trị là 54.
Vậy ý d sai.
Câu 18:
Trong không gian với hệ tọa độ \[Oxyz\], cho \[\left( P \right):ax + by + cz - 27 = 0\] đi qua hai điểm \[A\left( {3;2;1} \right)\] và \[B\left( { - 3;5;2} \right)\] và vuông góc với \[\left( Q \right):3x + y + z + 4 = 0\]. Tính tổng \[S = a + b + c.\]
Đáp án đúng là: A
Theo đề bài, ta có: \[\left\{ \begin{array}{l}3a + 2b + c - 27 = 0\\ - 3a + 5b + 2z - 27 = 0\\3a + b + c = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 6\\b = - 27\\c = 45\end{array} \right.\].
Vậy \[S = a + b + c = - 6 + \left( { - 27} \right) + 45 = 12\].
Câu 19:
Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là
Đáp án đúng là: A
Ta có: \[\overrightarrow {AB} = \left( {2; - 3; - 2} \right)\], \[\overrightarrow {AC} = \left( { - 2; - 1; - 1} \right)\] nên
\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&{ - 2}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 1}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 2}&{ - 1}\end{array}} \right|} \right) = \left( {1;6; - 8} \right)\].
Phương trình mặt phẳng \[\left( {ABC} \right)\] là \[x + 6y - 8z + 10 = 0.\]
Phương trình mặt phẳng \[B\] và vuông góc với \[AC\] là: \[2x + y + z - 2 = 0.\]
Phương trình mặt phẳng \[C\] và vuông góc với \[AB\] là: \[2x - 3y - 2z + 6 = 0.\]
Giao điểm của ba mặt phẳng trên là trực tâm \[H\] của tam giác \[ABC\] nên ta có tọa độ điểm \[H\] là \[\left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right) = - \frac{1}{{101}}\left( {22;31;26} \right).\]
Suy ra \[\overrightarrow {AH} = \left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right)\]
Mặt phẳng \[\left( P \right)\] đi qua \[A\], \[H\] nên \[\overrightarrow {{n_P}} \bot \overrightarrow {AH} \].
Mặt phẳng \[\left( P \right) \bot \left( {ABC} \right)\] nên \[\overrightarrow {{n_P}} \bot {\overrightarrow n _{\left( {ABC} \right)}} = \left( {1;6; - 8} \right).\]
Vậy \[{\overrightarrow n _P} = \left[ {{{\overrightarrow n }_{\left( {ABC} \right)}},\overrightarrow {AH} } \right] = \left( {404; - 202; - 101} \right) = 101\left( {4; - 2;1} \right).\]
Do đó, \[{\overrightarrow n _P} = \left( {4; - 2;1} \right)\] cũng là một vectơ pháp tuyến của \[\left( P \right)\].
Phương trình mặt phẳng \[\left( P \right)\] là \[4x - 2y - z + 4 = 0.\]
Câu 20:
Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {3;1;7} \right);B\left( {5;5;1} \right)\] và mặt phẳng \[\left( P \right):2x - y - z + 4 = 0\]. Điểm \[M\] thuộc \[\left( P \right)\] sao cho \[MA = MB = \sqrt {35} \]. Biết \[M\] có hoành độ nguyên, tính \[OM\].
Đáp án đúng là: C
Gọi \[M\left( {a;b;c} \right)\] với \[a \in \mathbb{Z},b \in \mathbb{R},c \in \mathbb{R}.\]
Ta có: \[\overrightarrow {AM} = \left( {a - 3;b - 1;c - 7} \right)\] và \[\overrightarrow {BM} = \left( {a - 5;b - 5;c - 1} \right)\].
Vì \[\left\{ \begin{array}{l}M \in \left( P \right)\\MA = MB = \sqrt {35} \end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}M \in \left( P \right)\\M{A^2} = M{B^2}\\M{A^2} = 35\end{array} \right.\] nên ta có hệ phương trình sau:
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = {\left( {a - 5} \right)^2} + {\left( {b - 5} \right)^2} + {\left( {c - 1} \right)^2}\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\4a - 8b - 12c = - 8\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = c\\c = a + 2\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = a + 2\\c = a + 2\\3{a^2} - 14a = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\] (do \[a \in \mathbb{Z}\]).
Ta có \[M\left( {0;2;2} \right)\] nên suy ra \[OM = 2\sqrt 2 .\]