IMG-LOGO

Câu hỏi:

15/07/2024 139

Cho đoạn thẳng CD. Gọi A là trung điểm của CD. Kẻ một đường thẳng vuông góc với CD tại A. Trên đường thẳng đó, lấy điểm B sao cho BCD^=60°. Khi đó ∆BCD là tam giác gì?


A. Tam giác tù;               



B. Tam giác đều;            


Đáp án chính xác

C. Tam giác vuông cân;            

D. Tam giác vuông.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho đoạn thẳng CD. Gọi A là trung điểm của CD. Kẻ một đường thẳng vuông (ảnh 1)

Ta có AC = AD (A là trung điểm của CD) và AB CD (giả thiết)

Suy ra AB là đường trung trực của đoạn thẳng CD.

Do đó BD = BC (tính chất đường trung trực của một đoạn thẳng)

Vì vậy ∆BCD cân tại B.

Mà ∆BCD có C^=60° (giả thiết)

Do đó ∆BCD là tam giác đều.

Vậy ta chọn phương án B.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC cân tại A. Lấy điểm D AC, E AB sao cho AD = AE. Gọi I là giao điểm của BD và CE. Kết luận nào sau đây đúng nhất?

Xem đáp án » 04/01/2023 170

Câu 2:

Cho ∆ABC vuông tại A có hai đường trung trực của hai cạnh AB và AC cắt nhau tại D. Vị trí của điểm D là:

Xem đáp án » 04/01/2023 156

Câu 3:

Cho ∆ABC có B^=2C^. Kẻ đường phân giác BD, từ D kẻ DE //BC (E AB). Số tam giác cân là:

Xem đáp án » 04/01/2023 145

Câu 4:

Cho ∆ABC đều. Lấy các điểm D, E, F lần lượt trên các cạnh AB, BC, CA sao cho AD = BE = CF. Khi đó ∆DEF là:

Xem đáp án » 04/01/2023 138

Câu 5:

Cho ∆ABC vuông tại A, AB < AC. Tia phân giác của B^ cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D. Kết luận nào sau đây đúng nhất?

Xem đáp án » 04/01/2023 115

Câu 6:

Cho xOy^ khác góc bẹt, từ một điểm M trên tia phân giác của xOy^. Từ M kẻ MA vuông góc với Ox và MB vuông góc với Oy. Phát biểu nào dưới đây là sai?

Xem đáp án » 04/01/2023 105

Câu hỏi mới nhất

Xem thêm »
Xem thêm »