Hai đường thẳng xz và yt cắt nhau tại A như hình vẽ bên, hãy xác định các cặp góc đối đỉnh có trong hình vẽ.
Hướng dẫn giải:
- Vì hai đường thẳng xz và yt cắt nhau tại A nên ta có: Hai tia Ax và Az đối nhau; hai tia Ay và At đối nhau.
- Xét hai góc \(\widehat {xAt}\) và \(\widehat {yAz}\) có:
+ Chung đỉnh A.
+ Tia Ax là tia đối của tia Az; tia At là tia đối của tia Ay.
Do đó \(\widehat {xAt}\) và \(\widehat {yAz}\) là hai góc đối đỉnh.
- Xét hai góc \(\widehat {xAy}\) và \(\widehat {tAz}\) có:
+ Chung đỉnh A.
+ Tia Ax là tia đối của tia Az; tia Ay là tia đối của tia At.
Do đó \(\widehat {xAy}\) và \(\widehat {tAz}\) là hai góc đối đỉnh.
Vậy ta có hai cặp góc đối đỉnh là: \(\widehat {xAt}\) và \(\widehat {yAz}\); \(\widehat {xAy}\) và \(\widehat {tAz}\).
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có kề với nhau không? Vì sao?
Cho các khẳng định sau:
(I). Hai góc đối đỉnh thì bằng nhau.
(II). Hai góc bằng nhau thì đối đỉnh.
(III). Hai góc kề bù là hai góc vừa kề nhau, vừa bù nhau.
Số khẳng định đúng là:
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có bù với nhau không? Vì sao?
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có kề bù với nhau không? Vì sao?
Điền vào chỗ trống trong phát biểu sau:
“Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc…”