IMG-LOGO

Câu hỏi:

15/07/2024 99

Cho ∆ABC có AH vừa là đường cao, vừa là đường phân giác. Hỏi ∆ABC chắc chắn là tam giác gì?


A. Tam giác cân;


Đáp án chính xác

B. Tam giác đều;

C. Tam giác vuông;

D. Tam giác nhọn.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Media VietJack

Xét ∆ABH và ∆ACH, có:

AH là cạnh chung.

AHB^=AHC^=90°.

BAH^=CAH^ (do AH là đường phân giác của ∆ABC).

Do đó ∆ABH = ∆ACH (cạnh góc vuoogn – góc nhọn kề).

Suy ra AB = AC (cặp cạnh tương ứng).

Khi đó ∆ABC cân tại A.

Vì không có thêm dữ kiện nào để khẳng định tam giác ABC đều hay vuông hoặc nhọn nên ta chưa khẳng định được các đáp án B, C, D.

Vậy ta chọn đáp án A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆MNP có N^=50°, P^=60°. Các đường phân giác NE, PF cắt nhau ở H. Số đo NHP^ bằng:

Xem đáp án » 14/10/2022 154

Câu 2:

Cho ∆ABC cân tại A. Gọi CP, BQ là các đường phân giác của ∆ABC (P ∈ AB, Q ∈ AC). Gọi O là giao điểm của CP và BQ. Cho các khẳng định sau:

(I) ∆OBC cân;

(II) O cách đều ba cạnh AB, AC, BC;

(III) AO là đường trung trực của đoạn thẳng BC;

(IV) CP = BQ;

(V) ∆APQ cân tại P.

Số khẳng định đúng là:

Xem đáp án » 14/10/2022 123

Câu 3:

Cho hình vẽ bên:

Media VietJack

Biết CI, BI là hai đường phân giác của ∆ABC. Tìm x.

Xem đáp án » 14/10/2022 105

Câu 4:

Cho ∆ABC biết ABC^=60°, BAC^=80°. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác này. Số đo ICA^ bằng:

Xem đáp án » 14/10/2022 104

Câu 5:

Cho ∆MNP cân tại M có G là trọng tâm. Gọi I là điểm nằm trong ∆MNP và cách đều ba cạnh của tam giác đó. Gọi H, K lần lượt là hình chiếu của I lên MN, MP. Khẳng định nào sau đây đúng?

Xem đáp án » 14/10/2022 99

Câu 6:

Cho ∆ABC có A^=120°. Các đường phân giác xuất phát từ đỉnh B và C cắt nhau tại O. Vẽ tia Bx sao cho BA là tia phân giác của OBx^. Vẽ tia Cy sao cho CA là tia phân giác của OCy^. Hai tia Bx và CA cắt nhau tại E, hai tia Cy và BA cắt nhau tại D. Hỏi ∆ODE là tam giác gì?

Xem đáp án » 14/10/2022 99

Câu 7:

Cho ∆ABC có AB = 3 cm, AC = 5 cm, BC = 6 cm. Gọi O là giao điểm của các tia phân giác xuất phát từ đỉnh B và đỉnh C của ∆ABC. Kẻ OH ⊥ BC tại H, OK ⊥ AB tại K và OI ⊥ AC tại I. Độ dài đoạn thẳng HB bằng:

Xem đáp án » 14/10/2022 96

Câu 8:

Cho xOy^ có tia phân giác Oz. Trên tia Ox, lấy điểm A bất kỳ. Từ A kẻ đường thẳng vuông góc với Ox, đường thẳng này cắt Oz tại H và cắt Oy tại K. Lấy điểm B trên tia Ox sao cho KA là đường phân giác của OKB^. Kẻ HI ⊥ OK (I ∈ OK). Khẳng định nào sau đây đúng nhất?

Xem đáp án » 14/10/2022 96

Câu 9:

Cho ∆ABC có CF là tia phân giác của C^ (F ∈ AB). Qua F kẻ đường thẳng song song với BC cắt AC ở E. Trên cạnh BC lấy điểm D sao cho CD = FE. FC là đường phân giác của tam giác nào?

Xem đáp án » 14/10/2022 96

Câu 10:

Cho ∆DEF có DE = DF, hạ DK ⊥ EF (K ∈ EF). Gọi EM, FN lần lượt là tia phân giác của DEF^ và DFE^. Đường thẳng DK đi qua điểm nào trong các điểm sau đây:

Xem đáp án » 14/10/2022 94

Câu 11:

Cho ∆ABC cân tại A. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của ∆ABC. Kẻ AH ⊥ BC tại H. Khẳng định nào sau đây sai?

Xem đáp án » 14/10/2022 86

Câu 12:

Cho ∆ABC vuông tại A. Vẽ AH ⊥ BC. Tia phân giác HAC^ cắt BC tại K. Các đường phân giác của BAH^ và BHA^ cắt nhau tại O. Gọi M là trung điểm của AK. Khẳng định nào sau đây đúng?

Xem đáp án » 14/10/2022 86

Câu 13:

Cho ∆ABC có B^>C^. Từ đỉnh A, kẻ đường cao AH và đường phân giác AD của ∆ABC. Số đo HAD^ bằng:

Xem đáp án » 14/10/2022 76

Câu 14:

Cho ∆ABC có I là giao điểm của các đường phân giác xuất phát từ đỉnh B và đỉnh C. Gọi D là giao điểm của AI và BC. Kẻ IH ⊥ BC tại H. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 14/10/2022 75

Câu hỏi mới nhất

Xem thêm »
Xem thêm »