Cho ∆ABC cân tại A. Gọi M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại E. Điểm E thuộc đường thẳng nào trong các đường thẳng sau đây.
A. BC;
Đáp án đúng là: B
Xét ∆MAB và ∆MAC, có:
AB = AC (do ∆ABC cân tại A),
AM là cạnh chung,
BM = CM (do M là trung điểm BC.
Do đó ∆MAB = ∆MAC (c.c.c).
Suy ra (cặp góc tương ứng).
Mà (hai góc kề bù).
Suy ra .
Do đó AM ⊥ BC tại M.
Mà M là trung điểm BC (giả thiết).
Suy ra AM là đường trung trực thứ ba của ∆ABC.
Vì vậy AM cũng đi qua giao điểm E của hai đường trung trực của AB và AC.
Do đó E ∈ AM.
Vậy ta chọn đáp án B.
Cho ∆ABC có ba góc nhọn, O là giao điểm hai đường trung trực của AB và AC. Trên tia đối của tia OB, lấy điểm D sao cho OB = OD. Biết . Khẳng định nào sau đây đúng nhất?
Cho ∆ABC, gọi I là giao điểm của hai đường trung trực của hai cạnh AB và AC. Kết quả nào dưới đây đúng?
Cho , A là một điểm di động ở trong . Vẽ các điểm M và N sao cho Ox là đường trung trực của AM và Oy là đường trung trực của AN. Để O là trung điểm của MN của giá trị của α bằng:
Cho ∆ABC có AB < AC. Trên cạnh AC lấy điểm M sao cho CM = AB. Vẽ đường trung trực của AC, cắt tia phân giác của tại điểm O. Đường trung trực của đoạn thẳng BM đi qua điểm:
Cho ∆ABC có tù. Các đường trung trực của AB và AC cắt BC lần lượt tại D và E. Biết . Số đo bằng:
Cho ∆ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Vẽ các điểm D và E sao cho AB là đường trung trực của MD và AC là đường trung trực của ME. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC cân tại A. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = AE, CD cắt BE tại O. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC cân tại A, có . Đường trung trực của cạnh AB cắt BC tại D. Trên tia đối của tia AD, lấy điểm M sao cho AM = CD. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có là góc tù. Các đường trung trực của cạnh AB và AC cắt nhau tại O và cắt BC theo thứ tự tại D và E. Khẳng định nào sau đây đúng nhất?