Cho hình vẽ, biết rằng \(\widehat {{\rm{xOy}}} = 48^\circ \), \(\widehat {{\rm{mOn}}} = 30^\circ \) và Om là tia phân giác của \(\widehat {{\rm{zOn}}}\). Số đo của \(\widehat {{\rm{yOz}}}\) là
Hướng dẫn giải
Đáp án đúng là: C
Theo bài ra ta có Om là tia phân giác của \(\widehat {{\rm{zOn}}}\)
Suy ra \(\widehat {{\rm{zOm}}} = \widehat {{\rm{mOn}}}\) (tính chất tia phân giác của một góc) (1)
Mà \(\widehat {{\rm{zOm}}} + \widehat {{\rm{mOn}}} = \widehat {{\rm{zOn}}}\) (hai góc kề nhau) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{zOm}}} = \widehat {{\rm{mOn}}} = \frac{{\widehat {{\rm{zOn}}}}}{2}\)
Suy ra \(\widehat {{\rm{zOn}}} = 2\widehat {{\rm{mOn}}} = 2.30^\circ = 60^\circ \)
Ta có \(\widehat {{\rm{xOy}}} + \widehat {{\rm{yOz}}} = \widehat {{\rm{xOz}}}\) (hai góc kề nhau) và \(\widehat {{\rm{xOz}}} + \widehat {{\rm{zOn}}} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {{\rm{xOy}}} + \widehat {{\rm{yOz}}} + \widehat {{\rm{zOn}}} = \widehat {{\rm{xOn}}} = 180^\circ \)
Hay \(48^\circ + \widehat {{\rm{yOz}}} + 60^\circ = 180^\circ \)
Suy ra \(\widehat {{\rm{yOz}}} = 180^\circ - 48^\circ - 60^\circ = 72^\circ \)
Vậy ta chọn phương án C.
Cho hình vẽ, biết rằng OC là tia phân giác của \(\widehat {{\rm{BOD}}}\).
Chọn khẳng định sai:
Cho hình vẽ, biết rằng OB là tia phân giác của \(\widehat {{\rm{AOC}}}\).
Số đo của \(\widehat {{\rm{BOC}}}\)là
Cho hình vẽ
Giá trị của m để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) là:
Cho hai đường thẳng BE và FD cắt nhau tại A. Kẻ tia AC là tia phân giác của \(\widehat {{\rm{BAD}}}\), biết rằng \(\widehat {{\rm{CAD}}} = 25^\circ \). Số đo của \(\widehat {{\rm{EAF}}}\)là.
Cho \(\widehat {{\rm{BOD}}}\) có OC là tia phân giác. Kẻ OA, OE lần lượt là tia đối của OD và OC. Chọn khẳng định sai:
Cho hình vẽ, biết rằng \(\widehat {{\rm{xOy}}} = 110^\circ \) và Oz là phân giác của \(\widehat {{\rm{yOt}}}\).
Số đo của \(\widehat {{\rm{xOz}}}\)là