Cho hai đa thức:
A(x) = –x2 + (m – 1)x và B(x) = –x3 – (n – 4)x2 + 1.
Với m = 2 và n = –1 thì giá trị của A(x) + 2B(x) là:
Hướng dẫn giải
Đáp án đúng là: D
Thay m = 2 vào đa thức A(x) ta có:
A(x) = – x2 + (2 – 1)x = – x2 + x.
Thay n = – 1 vào đa thức B(x) ta có:
B(x) = – x3 – (– 1 – 4)x2 + 1 = – x3 + 5x2 + 1.
Do đó A(x) + 2B(x)
= – x2 + x + 2 . (– x3 + 5x2 + 1)
= – x2 + x − 2x3 + 10x2 + 2
= − 2x3 + (10x2 – x2) + x + 2
= − 2x3 + 9x2 + x + 2
Vậy ta chọn phương án D.
Cho hai đa thức:
f(x) = x2 – 5x + 3a – 7 và g(x) = –4x + 11a.
Biết rằng h(x) = f(x) – g(x). Giá trị của a để h(2) = 3 là:
Cho hai đa thức:
A(x) = 2x3 – 5x + 7 và B(x) = – 3x3 – 8.
Nghiệm của đa thức P(x) = 3A(x) + 2B(x) là: