Cho ∆ABC cân tại A có AH là tia phân giác của \(\widehat {{\rm{BAC}}}\) và \(\widehat {\rm{C}} = 52^\circ \). Số đo của \(\widehat {{\rm{BAH}}}\) là
Hướng dẫn giải
Đáp án đúng là: D
Theo bài ra ta có ∆ABC cân tại A nên \(\widehat {\rm{B}} = \widehat {\rm{C}} = 52^\circ \) (tính chất tam giác cân)
Xét ∆ABC có \(\widehat {{\rm{BAC}}} + \widehat {\rm{B}} + \widehat {\rm{C}} = 180^\circ \) (tổng ba góc trong một tam giác bằng 180°)
Hay \(\widehat {{\rm{BAC}}} + 52^\circ + 52^\circ = 180^\circ \)
Suy ra \(\widehat {{\rm{BAC}}} = 180^\circ - 52^\circ - 52^\circ = 76^\circ \)
Mà AH là tia phân giác của \(\widehat {{\rm{BAC}}}\)
Suy ra \(\widehat {{\rm{BAH}}} = \widehat {{\rm{CAH}}} = \frac{{\widehat {{\rm{BAC}}}}}{2} = \frac{{76^\circ }}{2} = 38^\circ \) (tính chất tia phân giác của một góc)
Vậy ta chọn phương án B.
Cho ∆ABC cân tại A có BC = 8 cm; chu vi của ∆ABC bằng 28 cm. Độ dài cạnh AC là
Cho ∆DEF cân tại D có \(\widehat {\rm{D}} = 104^\circ \). Số đo của \(\widehat {\rm{E}}\) là
Cho ∆ABC cân tại A có \(\widehat B = 30^\circ .\) Số đo của \(\widehat C\) là
Cho tam giác ABD có AB < AD < BD và \(\widehat {ADB} = 32^\circ \). Trên cạnh BD lấy điểm C sao cho AB = CA = CB. Số đo của \(\widehat {{\rm{CAD}}}\) là