Đối với dao động cơ điều hòa của một chất điểm thì khi chất điểm đi đến vị trí biên nó có
A. tốc độ bằng không và gia tốc cực đại.
B. tốc độ bằng không và gia tốc bằng không.
C. tốc độ cực đại và gia tốc cực đại.
D. tốc độ cực đại và gia tốc bằng không.
Chọn A.
Một nguồn phát sóng cơ dao động theo phương trình \(u = 4{\rm{cos}}\left( {2\pi t - \frac{\pi }{4}} \right){\rm{cm}}\). Biết dao động tại hai điểm gần nhau nhất trên cùng một phương truyền sóng cách nhau \(0,9{\rm{\;m}}\) có độ lệch pha là \(\frac{{2\pi }}{3}\). Tốc độ truyền của sóng đó là
Một con lắc lò xo có độ cứng \({\rm{k}} = 20{\rm{\;N}}/{\rm{m}}\), dao động với quỹ đạo dài \(10{\rm{\;cm}}\). Năng lượng dao động điều hòa của con lắc là
Con lắc lò xo dao động điều hòa với biên độ \(8{\rm{\;cm}}\). Xác định li độ của vật để thế năng của lò xo bằng \(\frac{1}{3}\) động năng của nó.
Cho một sóng ngang có phương trình sóng là \({\rm{u}} = 8{\rm{cos}}\left( {\frac{{2\pi }}{{0,1}}t - \frac{{2\pi }}{{0,2}}x} \right){\rm{mm}}\), trong đó \({\rm{x}}\) tính bằng \({\rm{cm}},{\rm{t}}\) tính bằng giây. Tốc độ truyền sóng là
Tại một nơi, chu kỳ dao động điều hòa của con lắc đơn là \(0,8{\rm{\;s}}\). Sau khi tăng chiều dài con lắc thêm 9 cm thì chu kỳ dao động điều hòa của nó là \(1{\rm{\;s}}\). Chiều dài ban đầu của con lắc là
Công thức nào sau đây được dùng để tính tần số dao động điều hòa của con lắc lò xo
Một sóng lan truyền với vận tốc \(50{\rm{\;m}}/{\rm{s}}\) có bước sóng \(500{\rm{\;cm}}\).Tần số và chu kì của sóng là
Một con lắc đơn gồm một dây treo dài \(0,9{\rm{\;m}}\) và một vật nặng khối lượng \(m = 0,2{\rm{\;kg}}\) dao động ở nơi có gia tốc trọng trường g=10m/s \({{\rm{s}}^2}\). Chu kỳ dao động của con lắc khi biên độ nhỏ là
Một vật dao động điều hòa, trong 1 phút thực hiện được 30 dao động toàn phần. Quãng đường mà vật di chuyển trong \(6{\rm{\;s}}\) là \(48{\rm{\;cm}}\). Biên độ dao động của vật là
Đại lượng nào sau đây của sóng không phụ thuộc môi trường truyền sóng?
Một chất điểm dao động điều hòa trên trục \(Ox\) có phương trình \(x = 8{\rm{cos}}\left( {\pi t + \frac{\pi }{4}} \right){\rm{cm}}\). \((x\) tính bằng cm, \({\rm{t}}\) tính bằng \({\rm{s}})\). Quãng đường của chất điểm đi được trong 1,5 chu kì là