Cho trong đó . Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự tại E và F. Tính
A.
B.
C.
D.
Ta có EA = EB (E thuộc đường trung trực của AB) nên tam giác EAB cân tại E
Suy ra
Lại có FA = FC (do F thuộc đường trung trực của AC) nên tam giác FAC cân tại F
Suy ra
Cho có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng
Cho có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng
Cho tam giác ABC cân tại A. Hai tia phân giác của góc B và góc C cắt nhau tại I.
Khi đó:
Cho tam giác ABC cân (không đều) ABC có AB = AC. Hai đường trung trực của hai cạnh AB, AC cắt nhau tại O. Khi đó khẳng định nào sau đây là đúng?
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt trung điểm của AB, AC và BC. Gọi O là giao điểm của ba đường phân giác trong tam giác ABC. Khi đó, tâm đường tròn ngoại tiếp tam giác ABC là:
Cho tam giác ABC cân tại A, M là trung điểm BC. Đường trung trực của AB và AC cắt nhau tại D. Khi đó ta có:
Cho vuông tại A, kẻ AH vuông góc với BC tại H. Trên cạnh AC lấy điểm K sao cho AK = AH. Kẻ . Chọn câu đúng
Cho , BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi M là trung điểm của BC. Em hãy chọn câu sai: