Ta có a, b phân biệt; nếu a // c và b // c thì:
A. \[a \bot b\];
B. \[a \equiv b\];
C. \[a \cap b\];
D. a // b.
Đáp án đúng là: D
Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
Qua một điểm ở ngoài đường thẳng, ta kẻ được bao nhiêu đường thẳng song song với đường thẳng đó.
Nếu đường thẳng t cắt hai đường thẳng x, y và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì:
Cho hình thang ABCD như hình vẽ. Tính góc BAC, biết AC là tia phân giác góc BCD.
Cho hai điểm phân biệt H, K. Ta vẽ một đường thẳng x đi qua điểm H và một đường thẳng y đi qua điểm K sao cho x // y. Có thể vẽ được bao nhiêu cặp đường thẳng x, y thỏa mãn điều kiện trên.
Điền nội dung phù hợp vào chỗ trống: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng … với đường thẳng kia.”
Qua điểm M nằm ngoài đường thẳng a, ta vẽ ba đường thẳng qua M và song song với a thì:
Cho hình vẽ bên dưới. Tính góc \[{M_2}\], biết a // b và \[{N_1} = 40^\circ \].
Cho hình vẽ như bên dưới. Tính \[\widehat {{N_3}}\], biết a // b và \[\widehat {{M_1}} = 50^\circ \].
Cho hình vẽ bên dưới. Tính số đo góc OHC, biết MN // BC và \[\widehat {AOM} = 59^\circ \]
Cho hình vẽ bên dưới. Tính \[\widehat {{I_1}}\], biết \[\widehat {{J_3}} = 26^\circ \]và x // y.
Điền cụm từ thích hợp vào chỗ trống: “Nếu một đường thẳng cắt hai đường thẳng … thì hai góc đồng vị bằng nhau.”
Cho hình vẽ như bên dưới. Tính \[\widehat {{M_3}}\], biết \[\widehat {{N_2}} = 137^\circ \].