Một công nhân làm được 20 sản phẩm trong 40 phút. Trong 60 phút người đó làm được bao nhiêu sản phẩm cùng loại?
A. 10 sản phẩm;
B. 30 sản phẩm;
C. 15 sản phẩm;
D. 35 sản phẩm.
Đáp án đúng là: B
Gọi x (sản phẩm) là số sản phẩm người đó làm trong 60 phút (x Î ℕ*).
Vì số sản phẩm tỉ lệ thuận với thời gian làm sản phẩm nên ta có:
\[\frac{x}{{20}}\]= \[\frac{{60}}{{40}}\]
Suy ra x = \[\frac{{60}}{{40}}.20 = 30\] (thỏa mãn điều kiện).
Vậy trong 60 phút người đó làm được 30 sản phẩm.
Chọn đáp án B.
Ba đội máy san đất làm ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 6 ngày và đội thứ ba trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy, biết rằng đội thứ nhất nhiều hơn đội thứ hai là 2 máy và các máy có cùng năng suất?
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức x : y : z = 1 : 3 : 4 và 2x + 3y – 2z = −6. Giá trị của x – 2y là:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Bạn Lan đi từ trường đến nhà với vận tốc 12 km/h hết 30 phút. Nếu Lan đi với vận tốc 10 km/h thì hết bao nhiêu thời gian?
Cho x và y là hai đại lượng tỉ lệ thuận. Gọi x1; x2 là hai giá trị của x và y1; y2 là hai giá trị tương ứng của y. Biết rằng x1 = 8; x2 = −10 và y1 − y2 = 9. Tính y1; y2 và biểu diễn y theo x.
Có 15 công nhân với năng suất như nhau đóng xong một chiếc tàu trong 40 ngày. Hỏi cần bao nhiêu công nhân để đóng xong một con tàu trong 30 ngày?
Tỉ số giữa số học sinh lớp 7A và 7B là 0,8 và tổng số học sinh của hai lớp 81. Tính số học sinh mỗi lớp.
Hai thanh sắt có thể tích là 26 cm3 và 13 cm3. Thanh thứ nhất nặng hơn thanh thứ hai 56 g. Hỏi thanh thứ hai nặng có khối lượng bằng bao nhiêu?
Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết \({x_1}\) = 2,5 thì y1 = −0,5. Hãy tính \({x_2}\) khi y2 = 5.