Cho ∆MNP và ∆GHI có \[\widehat M = \widehat G = 90^\circ \] và NP = HI. Cần thêm điều kiện gì để ∆MNP = ∆GHI theo trường hợp cạnh huyền – góc nhọn?
A. MN = GH;
B. \[\widehat P = \widehat I\];
C. \[\widehat N = \widehat H\];
D. Cả B, C đều đúng.
Đáp án đúng là: D
Bài toán cho sẵn: hai tam giác MNP và GHI có \[\widehat M = \widehat G = 90^\circ \] và NP = HI.
Ta thấy NP, HI lần lượt là cạnh huyền của ∆MNP và ∆GHI.
Do đó ta cần thêm điều kiện: góc nhọn của tam giác vuông này bằng góc nhọn tương ứng của tam giác vuông kia.
Ta thấy có thể xảy ra 2 trường hợp:
Trường hợp 1: \[\widehat N = \widehat H\].
Trường hợp 2: \[\widehat P = \widehat I\].
Do đó để ∆MNP = ∆GHI theo trường hợp cạnh huyền – góc nhọn, ta cần thêm điều kiện \[\widehat N = \widehat H\] hoặc \[\widehat P = \widehat I\].
Vậy ta chọn đáp án D.
Cho ∆ABC và ∆DEF có BC = EF, . Cần thêm điều kiện gì để ∆ABC = ∆DEF theo trường hợp cạnh huyền – cạnh góc vuông?
Cho tam giác ABC nhọn có AH ⊥ BC tại H. Trên tia đối của tia AB, lấy điểm D sao cho AD = AB. Kẻ DE ⊥ AH tại E. Hỏi ∆AHB = ∆AED theo trường hợp nào?
Cho hình thang cân MNPQ như hình vẽ sau:
Trong hình bên có mấy cặp tam giác vuông bằng nhau?
Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông không bằng nhau?
Cho ∆ABC vuông tại A. Lấy E ∈ BC sao cho BA = BE. Từ E dựng đường thẳng vuông góc với BC, cắt AC tại D. Hỏi ∆ABD = ∆EBD theo trường hợp nào?
Cho ∆FDE và ∆PQR có: \[\widehat E = \widehat R = 90^\circ \], DF = QP, \[\widehat D = \widehat P = 30^\circ \]. Phát biểu nào sau đây đúng?
Cho \[\widehat {xOy}\] khác góc bẹt. Trên tia phân giác Ot của \[\widehat {xOy}\] lấy điểm A. Gọi M là trung điểm OA. Đường thẳng qua M vuông góc với OA cắt Ox, Oy theo thứ tự tại B, C. Cho các khẳng định sau:
(I). “∆OBM = ∆OCM theo trường hợp cạnh góc vuông – góc nhọn kề”.
(II). “∆OBM = ∆ABM theo trường hợp hai cạnh góc vuông.”
Chọn câu trả lời đúng.