Cho ∆ABC nhọn và ∆ABC = ∆DEF. Kẻ AH ⊥ BC (H ∈ BC) và DK ⊥ EF (K ∈ EF). Kết luận nào sau đây là đúng?
A. AH = DK;
B. BH = EK;
C. \[\widehat {BAH} = \widehat {EDK}\];
D. Cả A, B, C đều đúng.
Đáp án đúng là: D
Xét ∆ABH và ∆DEK, có:
\[\widehat {AHB} = \widehat {DKE} = 90^\circ \].
AB = DE (vì ∆ABC = ∆DEF).
\[\widehat {ABH} = \widehat {DEK}\] (vì ∆ABC = ∆DEF).
Do đó ∆ABH = ∆DEK (cạnh huyền – góc nhọn).
Ta suy ra AH = DK; BH = EK và \[\widehat {BAH} = \widehat {EDK}\] (các cặp cạnh và cặp góc tương ứng).
Do đó cả A, B, C đều đúng.
Vậy ta chọn đáp án D.
Cho ∆ABC có AI, BH, CK là các đường cao (I ∈ BC, K ∈ AB, H ∈ AC). Biết ∆ABH = ∆ACK. Kết luận nào sau đây đúng?
Cho ∆ABC vuông tại A có AB < AC, \[\widehat B = 60^\circ \]. Kẻ AH ⊥ BC (H ∈ BC). Gọi D là điểm trên cạnh AC sao cho AD = AB. Kẻ DE ⊥ BC (E ∈ BC) và DK ⊥ AH (K ∈ AH). Cho các khẳng định sau:
(I) BH = AK;
(II) HA = KD = HE.
Chọn phương án đúng:
Cho ∆ABC vuông tại A. Trên cạnh BC, lấy điểm D sao cho BD = BA = 5 cm. Đường thẳng vuông góc với BC tại D cắt AC tại H. Gọi E là giao điểm của DH và AB. Biết CD = 3 cm. Độ dài cạnh BE bằng
Cho ∆ABC vuông tại A, tia phân giác \[\widehat B\] cắt AC tại D. Kẻ DE ⊥ BC tại E. Gọi H là giao điểm của BD và AE. Đường thẳng BH vuông góc với đường thẳng nào trong các đường thẳng sau đây.
Cho ∆ABC vuông tại A và ∆MNP vuông tại M có AB = MN, CB = PN. Biết AC = 5 cm. Tính độ dài MP.
Cho ∆ABC có M là trung điểm BC. Kẻ BE và CF lần lượt cùng vuông góc với AM ở E và F. Khi đó ta có BF song song với đường thẳng nào trong các đường thẳng sau đây.