Cho 7 chữ số 0; 8; 2; 3; 9; 5; 6. Viết được bao nhiêu số tự nhiên có 5 chữ số khác nhau từ 7 chữ số trên
A. 16 807 số;
B. 5040 số;
C. 2160 số;
D. 24 số.
Đáp án đúng là: C
Các số tự nhiên có năm chữ số khác nhau có dạng \(\overline {abcde} \) với a ≠ 0 và \(a \ne b \ne c \ne d \ne e\)
Vì a ≠ 0 nên a chỉ có thể là một trong các số 8; 2; 3; 9; 5; 6 nên có 6 cách chọn a.
b có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 1 chữ số a đã chọn nên có 6 cách chọn b.
c có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 2 chữ số a và b đã chọn nên có 5 cách chọn c.
d có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 3 chữ số a, b và c đã chọn nên có 4 cách chọn d.
e có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 4 chữ số a, b, c và d đã chọn nên có 3 cách chọn e.
Vậy viết được tất cả \(6 \times 6 \times 5 \times 4 \times 3 = 2160\) (số).
Trong một số tự nhiên, chữ số 5 có giá trị bằng 500. Chữ số 5 đứng ở hàng nào trong số tự nhiên đó?
Một số có tổng giá trị các chữ số của nó như sau: \(3 \times 100\,000 + 7 \times 1000 + 6 \times 100 + 5\) . Số đó là
Số tự nhiên gồm chín chục triệu, bốn triệu, năm chục nghìn, tám nghìn, một đơn vị và sáu trăm là
Cho 4 chữ số 0; 3; 6; 8, Viết được bao nhiêu số có ba chữ số từ các chữ số trên?