Lấy bốn điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Số đường thẳng có thể vẽ được là:
A. 3
B. 10
C. 12
D. 4
Từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được các đường thẳng đi qua hai điểm bất kì như sau:
+ Với điểm M ta có thể nối với các điểm: N, P, Q, K để tạo thành 4 đường thẳng phân biệt.
+ Với điểm N ta có thể nối với các điểm: P, Q, K để tạo thành 3 đường thẳng phân biệt.
+ Với điểm P ta có thể nối với các điểm: Q, K để tạo thành 2 đường thẳng phân biệt.
+ Với điểm Q ta có thể nối với điểm K để tạo thành 1 đường thẳng .
Vậy từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được tất cả:
4 + 3 + 2 + 1 = 10 đường thẳng phân biệt.
Đáp án cần chọn là: B
Vẽ ba đường thẳng phân biệt bất kì, số giao điểm của ba đường thẳng đó không thể là:
Cho điểm M nằm giữa điểm N và P như hình vẽ. Kết luận nào sau đây là đúng ?
Cho đoạn thẳng BC = 32cm. Gọi G là trung điểm của đoạn thẳng BC, H là trung điểm của đoạn thẳng GC. Khi đó, độ dài của đoạn thẳng BH là
Cho M thuộc đoạn thẳng AB, AM = 4cm, AB = 6cm. Gọi O là trung điểm của đoạn AB. hiểu
Tính MO.
Cho L là điểm nằm giữa hai điểm I và K. Biết IL = 2cm, LK = 5cm. Độ dài của đoạn thẳng IK là:
Cho ba điểm không thẳng hàng O, A, B. Tia Ox nằm giữa hai tia OA, OB khi và chỉ khi tia Ox cắt
Cho 24 điểm trong đó có 6 điểm thẳng hàng. Qua 2 điểm ta kẻ được một đường thẳng. Hỏi kẻ được tất cả bao nhiêu đường thẳng?
Cho điểm I thuộc đoạn thẳng AB. Biết AI = 5cm, AB = 8cm. Tính độ dài BI.
Biết IL = 4cm; LK = 5cm điều kiện để điểm I nằm giữa hai điểm L và K là: