Trong không gian Oxyz, (a) là mặt phẳng đi qua điểm A(2; -1; 5) và vuông góc với hai mặt phẳng (P): 3x - 2y + z = 0 và (Q): 5x - 4y + 3z + 1 = 0. Lập phương trình của mặt phẳng (a).
A. x + 2y - z + 5 = 0;
B. x + 2y + z - 5 = 0;
C. 2x - 4y - 2z - 10 = 0;
Đáp án đúng là: B
Ta có:
+)
+)
Mặt phẳng (a) vuông góc với hai mặt phẳng (P) và (Q) nên suy ra vuông góc với hai véc-tơ và
= (-2; -4; -2) = -2(1; 2; 1)
Mặt phẳng (a) đi qua A(2; -1; 5) và nhận (1; 2; 1) làm véc-tơ pháp tuyến là
(a): (x - 2) + 2(y + 1) + (z - 5) = 0
Û x + 2y + z - 5 = 0.
Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 0; 2) và B(4; 1; 1) Vectơ có tọa độ là:
Trong không gian Oxyz. Điểm nào sau đây thuộc mặt phẳng (P): -2x + y - 5 = 0?
Cho hàm số y = f (x) liên tục trên đoạn [a; b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f (x), trục hoành và hai đường thẳng x = a, x = b (a < b). Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
Cho hàm số f (x) liên tục trên [a; b] và F (x) là một nguyên hàm của f (x). Tìm khẳng định sai.
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 2(x - 1)ex, trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox
Trong không gian Oxyz, cho ba điểm M(1; 3; 2), N(-1; 2; 1), P(1; 2; -1). Lập phương trình tham số của đường thẳng đi qua điểm M và song song với NP.