Cho hai hình vuông có cùng cạnh bằng 5 được xếp chồng lên nhau sao cho đỉnh X của một hình vuông là tâm của hình vuông còn lại (như hình vẽ). Tính thể tích V của vật thể tròn xoay khi quay mô hình trên xung quanh trục XY.
Một cốc nước có dạng hình trụ chiều cao là 15cm, đường kính đáy là 6cm, lượng nước ban đầu trong cốc cao 10cm. Thả vào cốc nước 5 viên bi hình cầu có cùng đường kính là 2cm. Hỏi sau khi thả 5 viên bi, mực nước trong cốc cách miệng cốc bao nhiêu cm ? (Kết quả làm tròn sau dấu phẩy 2 chữ số).
Cho hai hình vuông có cùng cạnh bằng 5 được xếp chồng lên nhau sao cho đỉnh X của một hình vuông là tâm của hình vuông còn lại (như hình vẽ).
Tính thể tích V của vật thể tròn xoay khi quay mô hình trên xung quanh trục XY.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A. Biết AB=AA’=a, AC=2a. Gọi M là trung điểm của AC. Diện tích mặt cầu ngoại tiếp tứ diện MA’B’C’ bằng
Cho mặt cầu (S) tâm O và các điểm A,B,C nằm trên mặt cầu (S) sao cho AB=AC=6, BC=8. Khoảng cách từ tâm O đến mặt phẳng (ABC) bằng 2. Diện tích mặt cầu (S) bằng
Một người dùng một cái ca hình bán cầu có bán kính là 3cm để múc nước đổ vào trong một thùng hình trụ chiều cao 10cm và bán kính đáy bằng 6cm. Hỏi người ấy sau bao nhiêu lần đổ thì nước đầy thùng? (Biết mỗi lần đổ, nước trong ca luôn đầy).
Một chi tiết máy có hình dạng như hình vẽ 1, các kích thước được thể hiện trên hình vẽ 2 (hình chiếu bằng và hình chiếu đứng).
Người ta mạ toàn phần chi tiết này bằng một loại hợp kim chống gỉ. Để mạ 1m2 bề mặt cần số tiền 150000 đồng. Số tiền nhỏ nhất có thể dùng để mạ 10000 chi tiết máy là bao nhiêu? (làm tròn đến hàng đơn vị nghìn đồng).
Một bồn chứa xăng gồm hai nửa hình cầu có đường kính 1,8m và một hình trụ có chiều cao bằng 3,6m. Thể tích của bồn chứa gần nhất với kết quả nào sau đây?
Một chiếc thùng đựng nước có hình của một khối lập phương cạnh 1m chứa đầy nước. Đặt vào trong thùng đó một khối có dạng nón sao cho đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng.
Một con quạ muốn uống nước trong cốc có dạng hộp chữ nhật ( không có nắp ) với đáy là hình vuông cạnh bằng 5cm. Mực nước trong cốc đang có chiều cao 5cm vì vậy con quạ chưa thể uống được, để uống được nước thì con quạ cần thả các viên bi đá vào cốc để mực nước dâng cao thêm 1cm nữa. Biết rằng các viên bi là hình cầu có đường kính 1cm, chìm hoàn toàn trong nước và có số lượng đủ dùng. Hỏi con quạ cần thả ít nhất mấy viên bi vào cốc để có thể uống được nước ?
Giả sử viên phấn viết bảng có dạng hình trụ tròn xoay, bán kính đáy bằng 0,5cm, chiều cao bằng 10cm. Người ta làm các hộp đựng phấn có dạng hình hộp chữ nhật với kích thước 5cmx9cmx10cm. Khi xếp 500 viên phấn vào 11 hộp ta được kết quả nào trong các khả năng sau:
Một khối đá có hình là một khối cầu có bán kính R, người thợ thợ thủ công mỹ nghệ cần cắt và gọt viên đá đó thành một viên đá cảnh có hình dạng là một khối trụ. Tính thể tích lớn nhất có thể của viên đá cảnh sau khi đã hoàn thiện.
Một hộp nữ trang (xem hình vẽ) có mặt bên ABCDE với ABCE là hình chữ nhật, cạnh cong CDE là một cung của đường tròn có tâm là trung điểm M của đoạn thẳng AB. Biết ,BC=6cm và BQ=18cm. Hãy tính thể tích của hộp nữ trang.
Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Một cái ống hình trụ tròn xoay bên trong rỗng, có chiều cao bằng 25cm và đường kính đáy bằng 6cm đặt trên cái bàn nằm ngang có mặt bàn phẳng sao cho một miệng ống nằm trên mặt bàn. Người ta đặt lên trên miệng ống còn lại một quả bóng hình cầu có bán kính 5cm. Tính khoảng cách lớn nhất h có thể từ một điểm trên quả bóng tới mặt bàn nếu coi độ dày của thành ống là không đáng kể.
Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm3. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông; hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào?