Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;3;5), B(2;0;1), C(0;9;0) Tọa độ trọng tâm G của tam giác ABC là
Chọn D
Trong không gian Oxyz với lần lượt là các vecto đơn vị trên các trục Ox, Oy, Oz Tính tọa độ của vecto
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ , . Độ dài của vectơ bằng
Trong không gian tọa độ Oxyz, cho điểm A(3;-2;5). Hình chiếu vuông góc của điểm A trên mặt phẳng tọa độ (Oxz)
Trong không gian với hệ trục tọa độ Oxyz, nếu là véctơ chỉ phương của trục Oy thì
Trong không gian Oxyz, cho điểm M(1;-2;5). Khoảng cách từ M đến trục Oz bằng
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Trong không gian với hệ trục tọa độ Oxyz, cho A(0;-1;1), B(-2;1;-1), C(-1;3;2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D là
Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của điểm A(3;2;-4) lên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz, cho hai điểm A(1;0;1) và B(2;-1;3). Véc tơ có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ và . Giá trị của biểu thức bằng
Trong không gian Oxyz, cho 2 điểm M(1;-2;2) và N(1;0;4). Toạ độ trung điểm của đoạn thẳng MN là:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-3;2;-1), B(1;0;5). Tọa độ trung điểm I của đoạn thẳng AB là