Cho vuông tại A có . Tia phân giác của góc cắt AC tại D.
a) Chứng minh rằng BD=CD.a) Gọi E là trung điểm của BC. Suy ra
và có BA=BE ; (giả thiết); BD là cạnh chung
.
Xét và có: ; BE=CE ; DE chung
Cho có . Gọi M là trung điểm cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C kẻ tia Ax vuông góc với AB, trên tia Ax lấy điểm D sao cho AD= AB. Trên nửa mặt phẳng bờ AC không chứa điểm B kẻ Ay vuông góc với AC. Trên tia Ay lấy điểm E sao cho . Trên tia đối tia MA lấy MN= MA. Chứng minh rằng:
a,
Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng ; AM=AB sao cho M và C khác phía đối với đường thẳng AB. Vẽ đoạn thẳng và AN=AC sao cho N và B khác phía đối với đường thẳng AC. Gọi I, K lần lượt là trung điểm BN và CM. Chứng minh rằng:
a,
Cho có . Trên nửa mặt phẳng bờ BC chứa điểm A. Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho DB=BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA. Trên tia By lấy điểm E sao cho . Chứng minh rằng:
a,
Cho tam giác ABC có . Kẻ tia phân giác góc cắt AC tại D. Trên cạnh BC lấy điểm M sao cho BM=BA.
a) Chứng minh rằng .
Cho tam giác ABC có , tia phân giác của cắt BC tại D. Trên AD lấy điểm O, trên tia đối của tia AC lấy điểm M sao cho . Trên tia đối của tia AB lấy điểm N sao cho . Chứng minh rằng .
Cho .
a) Viết kí hiệu về sự bằng nhau của hai tam giác đó với ba cách khác.
Cho vuông tại A có AB= AC . Lấy M thuộc . Kẻ BD và CE vuông góc với đường thẳng AM. Chứng minh rằng:
a) .
Cho tam giác ABC có . Tia phân giác góc B cắt AC ở D. Trên tia đối BD lấy điểm E sao cho BE= AC . Trên tia đối CB lấy điểm K sao cho CK= AB. Chứng minh rằng: .
Cho tam giác ABC có . Các tia phân giác góc B, góc C cắt nhau tại O và cắt AC; AB theo thứ tự D; E. Chứng minh rằng: OD=OE.
Cho tam giác ABC nhọn. Kẻ , . Trên tia đối của tia BD lấy điểm H sao cho . Trên tia đối của tia CE lấy điểm K sao cho . Chứng minh:
a,