Cho a = 2m + 3, b = 2n + 1
Khẳng định nào sau đây đúng?
Trả lời:
Ta có:
\[\left\{ {\begin{array}{*{20}{c}}{2m = 2.m \Rightarrow 2m \vdots 2}\\{3\not \vdots 2}\end{array}} \right.\]
\[ \Rightarrow a = 2m + 3\not \vdots 2\]
\[\left. {\begin{array}{*{20}{c}}{2n \vdots 2}\\{1\not \vdots 2}\end{array}} \right\} \Rightarrow b = 2n + 1\not \vdots 2\]
→ Đáp án A, B sai
a + b = 2m + 3 + 2n + 1 = 2m + 2n + 4
\[{\rm{ = 2}}{\rm{.}}\left( {{\rm{m + n + 2}}} \right) \vdots {\rm{2}}\]
Đáp án C đúng.
Đáp án cần chọn là: C
Với a, b là số tự nhiên, nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho số nào dưới đây?
Tìm A = 15 + 1003 + x với \[x \in N\]. Tìm điều kiện của x để \[A \vdots 5\]
Cho tổng M = 75 + 120 + x. Với giá trị nào của x dưới đây thì M⋮3?
Cho A = 12 + 15 + 36 + x, \[x \in N\]. Tìm điều kiện của x để A không chia hết cho 9.
Cho \[C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\]. Khi đó C chia hết cho số nào dưới đây?