Quy đồng mẫu số các phân số \[\frac{{11}}{{12}};\frac{{15}}{{16}};\frac{{23}}{{20}}\] ta được các phân số lần lượt là:
Trả lời:
Ta có: \[12 = {2^2}.3;16 = {2^4};20 = {2^2}.5\]
Do đó \[MSC = {2^4}.3.5 = 240\]
\[\frac{{11}}{{12}} = \frac{{11.20}}{{12.20}} = \frac{{220}}{{240}}\]
\[\frac{{15}}{{16}} = \frac{{15.15}}{{16.15}} = \frac{{225}}{{240}}\]
\[\frac{{23}}{{20}} = \frac{{23.12}}{{20.12}} = \frac{{276}}{{240}}\]
Vậy các phân số sau khi đồng quy lần lượt là: \[\frac{{220}}{{240}};\frac{{225}}{{240}};\frac{{276}}{{240}}\]
Đáp án cần chọn là: A
Quy đồng mẫu số các phân số \[\frac{7}{{30}};\frac{{13}}{{60}};\frac{{ - 9}}{{40}}\] ta được các phân số lần lượt là:
Quy đồng mẫu số hai phân số \[\frac{2}{7};\frac{5}{{ - 8}}\] được hai phân số lần lượt là:
Em hãy sắp xếp các phân số sau theo thứ tự giảm dần: \[\frac{1}{4};\frac{2}{3};\frac{1}{2};\frac{4}{3};\frac{5}{2}\]
Sắp xếp các phân số \[\frac{{29}}{{40}};\frac{{28}}{{41}};\frac{{29}}{{41}}\] theo thứ tự tăng dần ta được
Lớp 6A có \[\frac{9}{{35}}\] số học sinh thích bóng bàn, \[\frac{3}{7}\] số học sinh thích bóng chuyền, \[\frac{4}{7}\] số học sinh thích bóng đá. Môn bóng nào được các bạn học sinh lớp 6A yêu thích nhất?
Điền dấu thích hợp vào chỗ chấm: \[\frac{{ - 12}}{{23}}...\frac{{ - 8}}{{23}}\]
Điền dấu thích hợp vào chỗ chấm: \[\frac{{ - 5}}{{13}}...\frac{{ - 7}}{{13}}\]
Phân số nào sau đây là kết quả của biểu thức \[\frac{{2.9.52}}{{22.\left( { - 72} \right)}}\] sau khi rút gọn đến tối giản?
Chọn số thích hợp điền vào chỗ trống sau: \[\frac{7}{{23}} < \frac{{...}}{{23}}\]
Rút gọn phân số \[\frac{{4.8}}{{64.\left( { - 7} \right)}}\] ta được phân số tối giản là: