Hai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong 10 giờ đầy bể, vòi thứ hai chảy riêng trong 8 giờ đầy bể. Vòi thứ ba tháo nước ra sau 5 giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau 1 giờ chảy được bao nhiêu phần bể?
Trả lời:
Trong 1 giờ, vòi thứ nhất chảy được là: \[1:10 = \frac{1}{{10}}\] (bể)
Trong 1 giờ, vòi thứ hai chảy được là: \[1:8 = \frac{1}{8}\] (bể)
Trong 1 giờ, vòi thứ ba tháo được là: \[1:5 = \frac{1}{5}\] (bể)
Sau 1 giờ, lượng nước trong bể có là:
\[\frac{1}{{10}} + \frac{1}{8} - \frac{1}{5} = \frac{1}{{40}}\] (bể)
Đáp án cần chọn là: B
Cho ba vòi nước cùng chảy vào một bể cạn. Vòi A chảy một mình thì sau 6 giờ sẽ đầy bể, vòi B chảy một mình thì mất 3 giờ đầy bể, vòi C thì mất 2 giờ đầy bể. Hỏi nếu cả ba vòi cùng chảy một lúc thì trong bao lâu sẽ đầy bể?
Tính \[\frac{4}{{15}} - \frac{2}{{65}} - \frac{4}{{39}}\] ta được
Tính tổng hai phân số \[\frac{{35}}{{36}}\] và \[\frac{{ - 125}}{{36}}\]
Cho \[A = \left( {\frac{1}{4} + \frac{{ - 5}}{{13}}} \right) + \left( {\frac{2}{{11}} + \frac{{ - 8}}{{13}} + \frac{3}{4}} \right)\]. Chọn câu đúng
Tìm \[x \in Z\]biết \[\frac{5}{6} + \frac{{ - 7}}{8} \le \frac{x}{{24}} \le \frac{{ - 5}}{{12}} + \frac{5}{8}\]
Giá trị của x thỏa mãn \[\frac{{15}}{{20}} - x = \frac{7}{{16}}\] là: